
1 

 

MILP-based Model Predictive Control of Electric Vehicle Fleet Charging in 

the presence of Electricity Production from Renewable Energy Sources 

 

Luka Grden, Branimir Škugor and Joško Deur 
University of Zagreb, Zagreb, Croatia 

Faculty of Mechanical Engineering and Naval Architecture 
e−mail: luka.grden@fsb.unizg.hr, branimir.skugor@fsb.unizg.hr, josko.deur@fsb.unizg.hr 

ABSTRACT 

Electric vehicles (EV) play a crucial role in transforming the transportation sector to become 

more sustainable, cleaner, and energy efficient. Given that EVs are generally parked and ready 

for charging for a great majority of time, advanced charging management techniques can take 

advantage of this opportunity to lower charging costs and more effectively harness the potential 

of renewable energy sources (RES). To address this objective, the paper proposes an optimal 

charging management strategy based on model predictive control (MPC), which relies on a 

mixed-integer linear programming (MILP) algorithm for online optimization of charging power 

of individual EVs within a fleet. The proposed strategy is formulated in two forms: (i) direct 

optimization of individual EV charging power and (ii) optimization of aggregate charging 

power distributed to individual EVs through a heuristic algorithm (hierarchical approach). The 

two strategies are evaluated against an offline optimization benchmark in terms of charging 

cost, RES energy utilization, and related optimization time execution for the case of one-week 

period, virtually electrified delivery vehicle fleet of a local retail company, and a two-tariff 

electricity price model. A dumb charging strategy, which simply performs charging under 

maximal power immediately upon EVs connection, is also used as an evaluation baseline. 
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INTRODUCTION 

The last decade has seen a significant shift in the global automotive industry towards plug-in 

electric vehicles (EVs). However, despite distinctive benefits of EVs, such as reduced pollutant 

and greenhouse gas emissions and lower operating costs, with their growing adoption, there are 

challenges arising from the need for adequate electricity infrastructure supported and related 

smart charging management solutions. Proper charging management can lead to charging cost 

reduction [1], balanced daily load profile on the grid [2], and reduction of the overall system 

emissions by maximising renewable energy sources (RES) exploitation [3]. To this end, an 

offline charging optimization, executed usually over a longer period (e.g., weeks or months), is 

typically used for investigating the potential of conventional fleet electrification through 

techno-economic analyses [4]. Depending on the considered scenario and available data used, 

a range of optimization techniques are exploited in literature for this task, such as dynamic, 

mixed-integer, and quadratic programming algorithms [1, 5, 6], robust and stochastic 

optimization methods [7, 8], and genetic algorithms [9]. The results of offline optimizations are 

often utilised as benchmarks for validating online (real-time) charging management strategies. 

In the context of real-time charging, an appealing technique is model predictive control (MPC) 

(see a conceptual illustration in Figure 1), which is characterized by its ability to account for 

multiple constraints on state and control variables and different predictions over a time horizon 
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while performing optimization in each sampling time step. For instance, authors in [10] propose 

an event-driven MPC framework for EV charging, aiming to minimise cost of energy 

consumption by tracking of a reference load profile defined by a grid system operator. To 

include EV drivers’ preferences, available charging time, and other technical constraints, the 

real-time optimization problem is formulated as a mixed-integer program (MILP) [10]. 

Similarly, an economic MPC charging strategy based on linear programming (LP) is used in 

[11], where full information about the electricity price time profile and State-of-Charge (SoC) 

of arriving EVs is assumed to be known. The results are also validated for the case of arriving 

EVs’ SoC uncertainty, showing a minor impact on the final cost. Additional savings can be 

achieved by introducing electricity production from renewable energy sources (e.g., solar or 

wind energy), thus contributing to the overall efficiency and independence of the local grid 

[12]. In this regard, an EV fleet can be used as a distributed energy storage for the maximal 

utilization of RES production. In that way, a fleet connected to the grid, using advanced 

charging management, can actively participate in regulating the load of the power grid, as well 

as in electricity markets. An interesting robust MPC approach handling intermittent nature of 

RES and EV charging demand uncertainty, while also considering the limited space at charging 

station, is proposed and discussed in [13]. Here, the objective is to increase the profit margin 

by providing the charging service to a maximum number of EV drivers. Similarly, in [5], a 

system that utilizes a stationary battery energy storage system (BESS) along with EV batteries 

is managed, with the aim to store excessive RES energy in BESS and use it for EV charging in 

periods of high electricity price. 

 

While the above-outlined real-time charging strategies optimize the charging power directly at 

the level of individual EVs (single-level charging), an alternative hierarchical approach is 

proposed in [14]. Here, the real-time optimization of charging power is performed on the 

aggregate level where the whole EV fleet is considered as a single aggregate battery, and the 

obtained optimal aggregate charging power is distributed over individual EVs using a rule-

based algorithm. Similar approach is addressed in [15] for electric buses, where the goal is not 

only to reduce charging costs but also to mitigate the local grid overload. The quadratic-cost 

charging power optimization is performed in real-time, and the aggregated power is then 

distributed using a fuzzy logic, considering the charging urgency depending on departure time 

and current SoC. In general, when compared to a single-level charging, hierarchical charging 

strategies are characterised by improved computational efficiency and scalability for an 

increased number of vehicles (see, e.g., its application to a fleet of 1000 EVs on the level of 

whole city in [16]), while introducing certain suboptimality due to inherent errors of aggregate 

modelling approach. 

 

This paper provides a single-level charging approach based on linear programming (LP) and 

mixed-integer linear programming (MILP) optimization techniques, used often for scheduling 

and planning purposes in general, as well as in the context of EV charging [5, 10, 11, 14, 16]. 

The MILP technique is applied due to the need to incorporate energy production from RES into 

the optimization problem, which introduces discontinuities and thus makes the LP formulation 

unsuitable. The proposed charging method is systematically verified against an offline 

optimization benchmark and a hierarchical dynamic programming (DP)-based charging 

approach proposed in the accompanying paper [17], for the scenario of virtually electrified 

delivery vehicle fleet of a local retail company and two-tariff electricity price model. 

 

In summary, the main contributions of the paper are: (i) setting up a MILP-based MPC for a 

single-level EV fleet charging management accounting for production from RES, and (ii) 

1168-2

Authors of this paper keep all rights to the paper. Any use of this document without explicit approval from authors is strictly forbidden.



3 

 

systematically evaluating the proposed method against the hierarchical method and the offline 

benchmark obtained by MILP. 

 

The remaining part of the paper is organized as follows. Sections II and III describe EV fleet 

models and an offline charging management optimization, respectively, where the latter is 

aimed at setting the globally optimal benchmark. Section IV elaborates on real-time charging 

methods, while Section V presents simulation results. Finally, concluding remarks are given in 

Section VI. 

 

 

Figure 1. Conceptual illustration of optimization-based EV fleet charging management 

EV FLEET MODELS 

This section presents EV fleet models used as a basis for charging optimization and simulations. 

The focus is on the distributed model where each EV is modelled separately, while more details 

on the EV fleet aggregate modelling approach are given in the accompanying paper [17]. 

Distributed EV fleet model for charging power optimization 

The EV batteries are modelled as energy storages with the state of energy SoEi as a state variable 

and the charging power 𝑃𝑐,𝑖 as a control variable. A discrete-time state equation of the individual 

ith battery, can be written as follows: 

   𝑆𝑜𝐸𝑖(𝑘 + 1) = 𝑆𝑜𝐸𝑖(𝑘) + 𝑆𝑜𝐸𝑖𝑛,𝑖(𝑘)𝑛𝑖𝑛,𝑖(𝑘)                       

−  𝑆𝑜𝐸𝑜𝑢𝑡,𝑖(𝑘)𝑛𝑜𝑢𝑡,𝑖(𝑘) + 𝜂𝑐ℎ
𝑃𝑐,𝑖(𝑘)Δ𝑇

𝐸𝑐,max,𝑖
,   𝑘 = 0,1, … ,𝑁𝑡 − 1, 

(1) 

where the index 𝑖 denotes the specific EV within the fleet (𝑖 = 0,1, … , 𝑁𝑣), with 𝑁𝑣 denoting 

the total number of EVs in the fleet. The variable 𝑘 marks the discrete time step, 𝑁𝑡 is the total 

number of those steps, 𝑆𝑜𝐸𝑖𝑛,𝑖 and 𝑆𝑜𝐸𝑜𝑢𝑡,𝑖 are the energy levels of individual EVs that connect 

and disconnect from the grid within the kth step, respectively, and 𝑛𝑖𝑛,𝑖 and 𝑛𝑜𝑢𝑡,𝑖 represent binary 
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variables taking values of one or zero for grid connection or disconnection, respectively. The 

parameter 𝐸𝑐,max,𝑖 is the maximum energy capacity of ith EV battery, 𝜂𝑐ℎ is the charging 

efficiency, and ∆𝑇 is the discretisation time step (here set to Δ𝑇 = 0.25 h which corresponds to 

15 min). The state variable SoE is defined as 𝑆𝑜𝐸𝑖 = 𝐸𝑐,𝑖/𝐸𝑐,max,𝑖, where 𝐸𝑐,𝑖 is the battery 

energy of ith EV, which equals the actual battery energy if EV is connected within the kth time 

step, while it is zero otherwise. The state variable is limited in the range from zero to one: 

0 ≤ 𝑆𝑜𝐸𝑖(𝑘) ≤ 𝑛𝑐𝑏,𝑖(𝑘), 𝑛𝑐𝑏,𝑖 ∈ {0, 1}, (2) 

where 𝑛𝑐𝑏,𝑖 represents a binary variable indicating whether the vehicle is connected (partially or 

fully) to the charger within kth step (𝑛𝑐𝑏,𝑖 = 1) or not connected at all (𝑛𝑐𝑏,𝑖 = 0). The battery 

charging power is limited only to positive values (i.e., one-directional power flow from the grid to 

EV is assumed), with the upper limit set to depend on the maximum charging power 𝑃𝑐,max,𝑖: 

               0 ≤ 𝑃𝑐,𝑖(𝑘) ≤ 𝑛𝑐𝑠,𝑖(𝑘)𝑃𝑐,max,𝑖, 𝑛𝑐𝑠,𝑖 ∈ [0, 1],  (3) 

where 𝑛𝑐𝑠,𝑖 expresses the share of time during which the EV is connected to the charger in the kth 

step. Additionally, the aggregate charging power of the fleet is constrained by its upper limit: 

∑ 𝑃𝑐,𝑖(𝑘)
𝑁𝑣

𝑖=1
≤ 𝑃𝑐,𝑎𝑔𝑔,max. (4) 

where 𝑃𝑐,𝑎𝑔𝑔,max denotes the maximal power that could be drawn from the grid. 

Aggregate EV fleet model for charging power optimization 

As opposed to the distributed EV fleet battery model, the aggregate model considers all EVs 

from the fleet as a single large battery, characterized by one state (SoE) and one control 

(charging power) variable (see [17] and [18] for more details). This approach relieves 

computational requirements but introduces certain inaccuracies in describing the fleet's 

behaviour due to aggregation effects and inability to capture nuances of individual vehicle 

interactions. 

Distributed EV fleet model for simulation study 

To make the above distributed EV fleet model suitable for overall transport-energy system 

simulation purposes and satisfy all the required constraints, the state equation (1) is modified as 

follows [17]: 

𝑆𝑜𝐸𝑖(𝑘) = {
𝑆𝑜𝐸𝑖𝑛𝑡,𝑖(𝑘), for  𝑛𝑜𝑢𝑡,𝑖(𝑘) = 0,

       0,                      for  𝑛𝑜𝑢𝑡,𝑖(𝑘) = 1.  
 (5) 

In the case when the vehicle is connected to grid at the kth step, the state variable 𝑆𝑜𝐸𝑖(𝑘) assumes 

an intermediate value 𝑆𝑜𝐸𝑖𝑛𝑡,𝑖, while it equals zero, otherwise. The intermediate value 𝑆𝑜𝐸𝑖𝑛𝑡,𝑖 

consists of SoE increase contributions brought by the charging power 𝑃𝑐,𝑖 and EV connection 

to the grid (𝑛𝑖𝑛,𝑖(𝑘) = 1): 

𝑆𝑜𝐸𝑖𝑛𝑡,𝑖(𝑘) = 𝑆𝑜𝐸𝑖(𝑘) + 𝑆𝑜𝐸𝑖𝑛,𝑖(𝑘)𝑛𝑖𝑛,𝑖(𝑘) + 𝜂𝑐ℎ
𝑃𝑐,𝑖(𝑘)𝛥𝑇

𝐸𝑐,max,𝑖
. (6) 

When the EV disconnects from the charger and a new driving mission starts (i.e., 𝑛𝑜𝑢𝑡,𝑖(𝑘) = 1), 

the variable 𝑆𝑜𝐸𝑜𝑢𝑡,𝑖 in (k+1)th step takes on the value of 𝑆𝑜𝐸𝑖𝑛𝑡,𝑖(𝑘): 
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𝑆𝑜𝐸𝑜𝑢𝑡,𝑖(𝑘 + 1) = {
𝑆𝑜𝐸𝑜𝑢𝑡,𝑖(𝑘), for   𝑛𝑜𝑢𝑡,𝑖(𝑘) = 0,

𝑆𝑜𝐸𝑖𝑛𝑡,𝑖(𝑘), for   𝑛𝑜𝑢𝑡,𝑖(𝑘) = 1.
 (7) 

On the other hand, in the case when the EV arrives from a driving mission and connects to the grid 

(i.e., 𝑛𝑖𝑛,𝑖(𝑘) = 1), the incoming state 𝑆𝑜𝐸𝑖𝑛,𝑖 is calculated by using a consumption function fSoC 

whose value depends on the outgoing state 𝑆𝑜𝐸𝑜𝑢𝑡,𝑖(𝑘) and the distance of the related ith driving 

mission 𝑑𝑖(𝑘): 

𝑆𝑜𝐸𝑖𝑛,𝑖(𝑘 + 1) = {
                     0,                                for   𝑛𝑖𝑛,𝑖(𝑘) = 0,

𝑓𝑆𝑜𝐶 (𝑆𝑜𝐸𝑜𝑢𝑡,𝑖(𝑘),  𝑑𝑖(𝑘)) , for   𝑛𝑖𝑛,𝑖(𝑘) = 1.  
 (8) 

The model (5)-(8) is accompanied by the individual charger power limit: 

𝑃𝑐,max,𝑖(𝑘) = min(𝑛𝑐𝑠,𝑖(𝑘)𝑃𝑐,max,𝑖,
1 − 𝑆𝑜𝐸𝑖(𝑘) − 𝑆𝑜𝐸𝑖𝑛,𝑖(𝑘)𝑛𝑖𝑛,𝑖(𝑘)

𝜂𝑐ℎ𝛥𝑇
𝐸𝑐,max,𝑖), .(9) 

where the first term within the min(.) function refers to the upper charging power limit from Eq. 

(3), while the second one corresponds to the upper SoE limit derived from Eq. (6) for the case of 

𝑆𝑜𝐸𝑖𝑛𝑡,𝑖 = 1 (i.e., to prevent violation of SoE-related constraint (2)). 

 

To encompass the aspect of maximum RES energy exploitation, the following condition is used: 

𝑃𝑔(𝑘) =

{
 

 −𝑃𝑟𝑒𝑠(𝑘) +∑ 𝑃𝑐,𝑖(𝑘)
𝑁𝑣

𝑖=1
,   for   − 𝑃𝑟𝑒𝑠(𝑘) +∑ 𝑃𝑐,𝑖(𝑘)

𝑁𝑣

𝑖=1
≥ 0,

                   0,                             for   − 𝑃𝑟𝑒𝑠(𝑘) +∑ 𝑃𝑐,𝑖(𝑘)
𝑁𝑣

𝑖=1
< 0,

 (10) 

where 𝑃𝑔 refers to the power drawn from the grid, ∑ 𝑃𝑐,𝑖(𝑘)
𝑁𝑣
𝑖=1  is an aggregate EV fleet charging 

power request, and 𝑃𝑟𝑒𝑠 is the power generated by RES. Namely, if the EV fleet charging power 

request is larger than the current RES production (the first condition in Eq. (10)), the RES power 

will be completely exploited and the remained power will be covered from the grid. Otherwise, 

i.e., if the fleet charging power request can be completely covered by the RES production (the 

second condition in Eq. (10)), the power drawn from the grid is zero. 

OFFLINE OPTIMIZATION OF EV FLEET CHARGING 

The main goal of EV fleet charging optimization is to minimize the charging energy cost, while 

satisfying all the imposed constraints, given the assumed electricity price and RES production 

time profiles. The cost is defined as: 

𝐽 =∑ 𝐶𝑒𝑙(𝑘)𝑃𝑔(𝑘)Δ𝑇 
𝑁𝑡−1

𝑘=0
, (11) 

where 𝐶𝑒𝑙(𝑘) is the time-varying electricity price (given in EUR/kWh), and the term 𝑃𝑔(𝑘)Δ𝑇 

(expressed in kWh) represents the grid-supplied charging energy in the kth step (see Eq. (10)). 

In the absence of RES energy production, the electricity drawn from the grid is equal to the 

total charging power given by 𝑃𝑔(𝑘) = ∑ 𝑃𝑐,𝑖(𝑘)
𝑁𝑣
𝑖=1 , while otherwise the expression (10) 

applies. From the perspective of optimization, it should be emphasized that the individual 

charging power profiles 𝑃𝑐,𝑖(𝑘) represent the control variables to be optimized. The 

optimization problem is subject to the dynamic discrete-time fleet model Eq. (1) and inequality 

constraints given by Eqs. (2)-(4). Additionally, to satisfy the charge sustaining condition, i.e., 

to ensure that the SoE at end of optimization horizon, 𝑆𝑜𝐸𝑓𝑖𝑛𝑎𝑙 = 𝑆𝑜𝐸𝑖(𝑁𝑡), is equal to the 
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initial one, 𝑆𝑜𝐸𝑖𝑛𝑖𝑡 = 𝑆𝑜𝐸𝑖(0), the following equality constraint is added to the optimization 

problem: 

𝑆𝑜𝐸𝑓𝑖𝑛𝑎𝑙 = 𝑆𝑜𝐸𝑖𝑛𝑖𝑡. 
 (12) 

No RES included - LP formulation 

In the case of no local RES, the above optimization problem is linear both in the cost function 

and constraints and can be represented in the general LP form [23]: 

 min
𝐱
𝐜𝑇𝐱,                          (13a) 

s. t.     𝐀𝐱 ≤ 𝐛, 𝐱 ∈ ℝ𝑛𝑥 ,    (13b) 

where 𝐜𝑇 is a cost vector and 𝐱 is an optimization vector to be determined to minimize the total 

cost 𝐜𝑇𝐱, while satisfying linear inequality constraints contained within the matrix expression 

𝐀𝐱 ≤ 𝐛. Considering the cost function (11), the vectors 𝐜𝑇 and 𝐱 can be defined as: 

𝐜𝑇 = [𝐶𝑒𝑙(0) 𝐶𝑒𝑙(1)… 𝐶𝑒𝑙(𝑁𝑡 − 1)]Δ𝑇, (14) 

𝐱 =  [𝑃𝑔(0) 𝑃𝑔(1)… 𝑃𝑔(𝑁𝑡 − 1)]
𝑇 . (15) 

The optimal control vector to be obtained for each EV within the fleet can be defined as: 

𝐮𝑖 = [𝑃𝑐,𝑖(0) 𝑃𝑐,𝑖(1) … 𝑃𝑐,𝑖(𝑁𝑡 − 1)]
𝑇
,  (16) 

and similarly, the optimal state variables can be denoted as: 

𝐲𝑖 = [𝑆𝑜𝐸𝑖(0) 𝑆𝑜𝐸𝑖(1) …  𝑆𝑜𝐸𝑖(𝑁𝑡)]
𝑇. (17) 

To comply with the state equation (1), the following equality constraint is set: 

𝑦𝑖(𝑘 + 1) =  𝑦𝑖(𝑘) + 𝐹𝑖(𝑢𝑖(𝑘)). (18) 

where 𝐹𝑖(𝑢𝑖(𝑘)) reads (cf. Eq. (1)): 

𝐹𝑖(𝑢𝑖(𝑘)) =  𝑆𝑜𝐸𝑖𝑛,𝑖(𝑘)𝑛𝑖𝑛,𝑖(𝑘) −  𝑆𝑜𝐸𝑜𝑢𝑡,𝑖(𝑘)𝑛𝑜𝑢𝑡,𝑖(𝑘) + 𝜂𝑐ℎ
𝑢𝑖(𝑘)Δ𝑇

𝐸𝑐,max,𝑖
. (19) 

In summary, the optimal LP charging problem, for 𝑖 = 0,1, … ,𝑁𝑣, and 𝑘 = 0,1, … ,𝑁𝑡 − 1, can 

be written as: 

 min
𝐮1,𝐮2,…,𝐮𝑁𝑣

𝐜𝑇𝐱 (𝐮1, 𝐮2, … , 𝐮𝑁𝑣) (20a) 

s. t.     𝑦𝑖(𝑘 + 1) =  𝑦𝑖(𝑘) + 𝐹𝑖(𝑢𝑖(𝑘))   (20b) 

 𝑦𝑖(0) = 𝑆𝑜𝐸𝑖𝑛𝑖𝑡,  (20c) 

 𝑦𝑖(𝑁𝑡) = 𝑆𝑜𝐸𝑓𝑖𝑛𝑎𝑙, (20d) 

 𝟎 ≤ 𝐲𝑖 ≤ 𝐧𝑐𝑏,𝑖 (20e) 

 𝟎 ≤ 𝐮𝑖 ≤ 𝐧𝑐𝑠,𝑖𝑃𝑐,max,𝑖,  (20f) 

 𝟎 ≤ 𝐱 ≤ 𝐏𝑐,𝑎𝑔𝑔,max,  (20g) 

where the constraints (20c) and (20d) define boundary SoE conditions (see Eq. (12)), while 

(20e), (20f), and (20g) relate to Eq. (2), Eq. (3), and Eq. (4), respectively. 
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RES included - MILP formulation 

In the case of including RES production in the optimal control problem formulation, the 

discontinuity in the form of conditional expression from Eq. (10) prevents the optimization 

from being solved with the standard LP method (13). To incorporate such discontinuity, a MILP 

formulation is employed, which includes additional optimization variables denoted as 𝐳, limited 

only to integer values, i.e. 𝐳 ∈ ℤ𝑛𝑧. Those variables are included in the problem via so called 

Big-M notation [19] (see Appendix for an example of transforming logical relations to 

inequality constraints appropriate for related solvers). In this regard, the optimal problem 

defined by Eq. (20) is expanded with integer optimization variables and logical relations as: 

 
min

𝐮1,𝐮2,…,𝐮𝑁𝑣
𝐜𝑇𝐱 (𝐮1, 𝐮2, … , 𝐮𝑁𝑣 , 𝐳), (21a) 

                      s. t.    Eqs. (20b) – (20g),  (21b) 

 
[𝑧(𝑘) = 1]  →  𝑃𝑔(𝑘) = −𝑃𝑟𝑒𝑠(𝑘) +∑ 𝑢𝑖(𝑘)

𝑁𝑣

𝑖=1  

, (21c) 

 [𝑧(𝑘) = 0]  →  𝑃𝑔(𝑘) = 0, (21d) 

where 𝐳 =  [𝑧(0) 𝑧(1)…  𝑧(𝑁𝑡 − 1)]
𝑇 and 𝑧(𝑘) in kth step implies the cases for the grid power 

𝑃𝑔(𝑘) as specified in Eq. (10): 

𝑧(𝑘) =

{
 

 1, for   − 𝑃𝑟𝑒𝑠(𝑘) +∑ 𝑢𝑖
𝑁𝑣

𝑖=1
(𝑘) ≥ 0,

  0, for   − 𝑃𝑟𝑒𝑠(𝑘) +∑ 𝑢𝑖
𝑁𝑣

𝑖=1
(𝑘) < 0.  

 
(22) 

The LP and MILP formulations (20) and (21), respectively, are implemented within Matlab 

environment by using YALMIP optimization toolbox [20], and linprog and intlinprog solvers 

are used to solve the respective optimization problems. 

EV FLEET CHARGING MANAGEMENT 

This section describes employment of LP- and MILP-based optimizations within the MPC 

framework for the real-time EV fleet charging. 

Single-level charging 

Unlike the offline optimization presented in the previous Section, where the calculation of 

optimal charging power is performed once over the entire time horizon considered (e.g., one 

week or one month), the MPC performs optimization in real-time (online) over a shorter 

receding horizon, i.e., at each discrete time step over a fixed-length prediction horizon window. 

In this study, the prediction horizon length 𝑁𝑝 is set to 96 steps, corresponding to the period of 

one day (for ∆T = 0.25 h). To perform the MPC optimization, the input time profiles: 𝑛𝑖𝑛,𝑖(𝑗|𝑘), 
𝑛𝑜𝑢𝑡,𝑖(𝑗|𝑘), 𝑆𝑜𝐸𝑖𝑛,𝑖(𝑗|𝑘), 𝑆𝑜𝐸𝑜𝑢𝑡,𝑖(𝑗|𝑘), 𝐶𝑒𝑙(𝑗|𝑘), 𝑃𝑟𝑒𝑠(𝑗|𝑘), 𝑛𝑐𝑏,𝑖(𝑗|𝑘), 𝑛𝑐𝑠,𝑖(𝑗|𝑘), should be 

predicted in each sampling time step for the prediction horizon 𝑗 = {0,1, … ,𝑁𝑝 − 1} relative to 

the current 𝑘𝑡ℎ step [17].  

 

The real-time MPC optimization problem is formulated as follows in the case no RES: 
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min
𝐮1,𝐮2,…,𝐮𝑁𝑣

  ∑ (𝐶𝑒𝑙(𝑗|𝑘)𝑃𝑔(𝑗|𝑘)Δ𝑇 + 𝐾𝑠∑ 𝑆𝑜𝐸𝑜𝑢𝑡,𝑠𝑙,𝑖(𝑗|𝑘)
𝑁𝑣

𝑖=1
)

𝑁𝑝−1

𝑗=0
      (23a) 

    s. t.   𝑦𝑖(𝑗 + 1|𝑘) = 𝑦𝑖(𝑗|𝑘) + 𝐹𝑖(𝑢𝑖(𝑗|𝑘)), ∀𝑖 ∈ {1,… ,𝑁𝑣}      (23b) 

 𝑦𝑖(0|𝑘) = 𝑆𝑜𝐸𝑖(𝑘), (23c) 

 𝑦𝑖(𝑁𝑡|𝑘) = 𝑆𝑜𝐸𝑓𝑖𝑛𝑎𝑙,    (23d) 

 0 ≤ 𝐲𝑖 ≤ 𝐧𝑐𝑏𝑖 , (23e) 

 0 ≤ 𝐮𝑖 ≤ 𝐧𝑐𝑠,𝑖𝑃𝑐,max,𝑖,  (23f) 

 0 ≤ 𝐏𝑔 ≤ 𝐏𝑐,𝑎𝑔𝑔,max,  (23g) 

 0 ≤ 𝐒𝐨𝐄𝑜𝑢𝑡,𝑠𝑙,𝑖.   (23h) 

Since the MPC controller is executed repetitively over time, the initial SoE of the optimization 

problem is equalized with the current 𝑆𝑜𝐸𝑖(𝑘), as denoted in Eq. (23c). For the results to be 

comparable with the offline optimization, an equality constraint has been added on the final 

state, Eq. (23d), only in the case when the end of prediction horizon reaches the end of 

simulation time (i.e., 𝑘 + 𝑁𝑝 ≥ 𝑁𝑡). The remaining expressions (23e)-(23g) are set in the same 

way as in the case of offline optimization (cf. Eq. (20)). Additionally, to avoid feasibility 

problems, a slack variable 𝑆𝑜𝐸𝑜𝑢𝑡,𝑠𝑙,𝑖(𝑗|𝑘) required to be positive via the constraint (23h) is 

introduced in Eq. (19) to read: 

       𝐹𝑖(𝑢𝑖(𝑗|𝑘)) = 𝑆𝑜𝐸𝑖𝑛,𝑖(𝑗|𝑘)𝑛𝑖𝑛,𝑖(𝑗|𝑘) 

                                − (𝑆𝑜𝐸𝑜𝑢𝑡,𝑖(𝑗|𝑘) − 𝑆𝑜𝐸𝑜𝑢𝑡,𝑠𝑙,𝑖(𝑗|𝑘)) 𝑛𝑜𝑢𝑡,𝑖(𝑘) + 𝜂𝑐ℎ
𝑢𝑖(𝑗|𝑘)Δ𝑇

𝐸𝑐,max,𝑖
 

 (24) 

This is to account for the possibility that EV can sometimes leave the grid with SoE lower than 

that prescribed by 𝑆𝑜𝐸𝑜𝑢𝑡,𝑖(𝑗|𝑘), which can arise due to the charging power limitation given by 

Eq. (23f). To minimise this effect, the slack variable is penalised in the objective function (23a) 

with a penalization factor Ks set to a relatively high value of 106. 
 

Similarly, as in the case of offline optimization, the MPC problem formulation from Eq. (23) 

can be extended to include the energy production from RES (cf. Eqs. (21c)-(21d)) as:  

 
[𝑧(𝑗|𝑘) = 1]  →  𝑃𝑔(𝑗|𝑘) = −𝑃𝑟𝑒𝑠(𝑗|𝑘) +∑ 𝑢𝑖(𝑗|𝑘)

𝑁𝑣

𝑖=1  

, (25a) 

 [𝑧(𝑗|𝑘) = 0]  →  𝑃𝑔(𝑗|𝑘) = 0, (25b) 

with 𝑧(𝑗|𝑘) determined as in Eq. (22). The MPC optimization yields the optimal charging power 

sequences for each EV, and only the first values of those sequences 𝑢𝑖(0|𝑘), 𝑖 ∈ {1, 2, … ,𝑁𝑣}, 
are applied as the actual EV charging power (i.e., applied to the simulation model (5)-(9)), while 

all other values are discarded. The procedure is repeated in the upcoming sampling time steps. 

Hierarchical charging 

To give a broader set of results, a hierarchical MPC charging strategy presented in the 

accompanying paper [17] is employed herein and it is outlined in what follows. In each 

sampling time step, the strategy performs charging power optimization on the aggregate level 

using the aggregate battery model and then distributes the obtained aggregate charging power 

to connected individual EVs using a heuristic/rule-based method. While the optimization on the 
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aggregate level is conducted by DP algorithm in [17], it is performed here by using LP/MILP 

formulation to be aligned with the proposed single-level charging strategies. 

Baseline (dumb) charging 

Along with the above optimization-based charging strategies, additional so-called dumb 

charging is also considered to serve as a verification baseline. It simply performs charging at 

the maximal power available, starting from the moment of EV connection to the grid until 

reaching the maximal SoE or EV disconnection from the charger [17]. 

RESULTS 

Case study and EV fleet model parameterization 

The EV fleet models previously described are parameterised based on experimental GPS data 

recorded on 10 conventional mid-size delivery trucks of a local retail company (see details on 

the model parameterization in [17]). A battery energy consumption model 𝑓𝑆𝑜𝐶(. ) from Eq. (8), 

is obtained by simulations of extended range electric vehicle (EREV) model. The recorded GPS 

data provides information on EV availability for charging (Figure 2), which is assumed to take 

place in the distribution centre (DC). Note that vehicles activity pattern is rather repetitive over 

working days, i.e., with the highest activity around 10 a.m. (with the minimum number of 

vehicles at DC) and lowest during early morning around 5 a.m., when all vehicles are parked at 

DC. Figure 3a shows hypothetical electricity production from photovoltaic panels adopted from 

[4], while Figure 3b depicts the two-tariff electricity price model, both given over the 

considered one week period. 

 

 
Figure 2. Time distributions of the number of EVs available for charging at DC (𝑛𝑐) and the 

distribution of vehicles arriving (𝑛𝑖𝑛) and departing (𝑛𝑜𝑢𝑡) from DC over a one week period  

 
 

 

(a) 
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Figure 3. Hypothetical time profiles of RES energy production (a), and two-tariff electricity 

price profile (b) 

From the above presented data, the following time profiles of EV fleet models are derived: 𝑛𝑖𝑛,𝑖, 
𝑛𝑜𝑢𝑡,𝑖, 𝑛𝑐𝑏,𝑖, 𝑛𝑐𝑠,𝑖, where  𝑖 = 1,2, … ,𝑁𝑣. The remaining parameters are set to: 𝑁𝑝 = 96, 𝑁𝑣 =

10, 𝐸𝑐,max,𝑖 = 72.67 kWh, 𝜂𝑐ℎ = 0.92, 𝑆𝑜𝐸𝑖𝑛𝑖𝑡 = 0.95, 𝑆𝑜𝐸𝑓𝑖𝑛𝑎𝑙 = 0.95, 𝑃𝑐,max,𝑖 = 25 kW,

𝑃𝑐,𝑎𝑔𝑔,max = 150 kW, 𝑁𝑡 = 672, ∆𝑇 =  0.25 h [17]. 

Results for case of no RES included 

In Figure 4, the aggregate SoE and aggregate charging power time profiles (obtained from time 

profiles of individual EVs) are shown for different charging approaches. As expected, the 

baseline (DUMB) charging brings the SoE value very close to the upper limit (𝑛𝑐/𝑁𝑣), because 

the vehicles are charged as soon as they arrive in DC. In the case of the globally optimal 

benchmark, OFF-LP, it is evident that most of the charging activity is shifted towards night 

hours, which is due to the cheaper electricity overnight (see Figure 3b). The MPC strategies 

exhibit similar charging power profiles to minimize related costs. Numerical values of the total 

fuel and energy consumption, and the charging costs are given in Table 1. Note that all strategies 

in Figure 4 end up around the same final target SoE value of 0.95 which facilitates fair 

comparison over related costs. To account for their minor differences, the specific cost 

(b) 

 
Figure 4. Aggregate SoE and charging power profiles obtained by different charging 

approaches applied to distributive battery model, with no RES considered 
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𝐶𝑒𝑙,𝑡𝑜𝑡/𝐸𝑐,𝑡𝑜𝑡 is also provided in the table. Firstly, the dumb charging results in around 10% 

higher cost with respect to the globally optimal benchmark OFF-LP, while this cost excess 

value equals 2.5% in the case of online hierarchical MPC (MPC-HIER). The increased cost of 

MPC-HIER may be attributed to the inaccuracies of the aggregate fleet optimization model and 

suboptimality of the heuristic aggregate charging power distribution method. On the other hand, 

the single-level MPC (MPC-DIST) approaches the benchmark within the margin of only 0.1%, 

and it is even slightly better in terms of specific cost, which is, however, at the cost of slightly 

higher fuel consumption. 

 

Table 1. Comparison of different optimization approaches - no RES case 

Charging 

profile 
1V𝑓𝑢𝑒𝑙,𝑡𝑜𝑡 [l]

 2𝐸𝑐,𝑡𝑜𝑡 [kWh]
 3𝐶𝑒𝑙,𝑡𝑜𝑡 [EUR]

 
4𝐶𝑒𝑙,𝑡𝑜𝑡/𝐸𝑐,𝑡𝑜𝑡 
[EUR/kWh] 

DUMB 
4273,4  

(+0.3%) 

6894.0  

(+0.1%) 

605.1  

(+10.3%) 

0.0878  

(+10.2%) 

OFF-LP 
4259.8  

(0.0%) 

6885.2  

(0.0%) 

548.5  

(0.0%) 

0.0797  

(0.0%) 

MPC-HIER 
4264.2  

(+0.1%) 

6872.7  

(−0.2%) 

561.8  

(+2.4%) 

0.0817  

(+2.5%) 

MPC-DIST 
4263.0  

(+0.07%) 

6910.2  

(+0.4%) 

549.2  

(+0.1%) 

0.0795  

(−0.3%) 
1 Total fuel consumption, 2 total charging energy, 3 total charging cost, 4 specific charging cost. 

Results for case of RES included 

As shown in Figure 5, the introduction of RES leads to a more balanced charging power 

response throughout the week (OFF-MILP profiles; cf. Fig. 4), i.e., the charging activity is no 

longer solely concentrated over the low-electricity price intervals in the night, but also occurs 

 
Figure 5. Comparative offline optimization results with RES included (OFF-MILP) and 

without RES (OFF-LP) 
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frequently at midday around solar noon, when the peak power generation by photovoltaic panels 

occurs (see green profiles). 

Comparative results for the case of RES production included are given in Table 2. The charging 

cost of DUMB is now 86% higher than that of the benchmark OFF-MILP, which is substantially 

more pronounced than in the case of no RES considered (cf. Table 1). This can be attributed to 

relatively low RES energy utilization, where DUMB charging uses 44.3% less RES energy than 

OFF-MILP (see Figure 6). On the other hand, the difference between MPC results is now 

smaller than in the no RES case, with the specific total cost of MPC-HIER being only 0.8% 

higher than that of MPC-DIST and OFF-MILP. The RES energy utilization is relatively high 

both for MPC-HIER and MPC-DIST, being around 0.66 and comparable to that of OFF-MILP. 

Table 2. Results of different charging approaches for one-week period and RES considered  

Charging 

profile 

1V𝑓𝑢𝑒𝑙,𝑡𝑜𝑡 

 [L] 

2𝐸𝑐,𝑡𝑜𝑡 
[kWh] 

3𝐸𝑐,𝑟𝑒𝑠/𝐸𝑐,𝑡𝑜𝑡 
4𝐶𝑒𝑙,𝑡𝑜𝑡 
[EUR] 

5𝐶𝑒𝑙,𝑡𝑜𝑡/𝐸𝑐,𝑡𝑜𝑡 
[EUR/kWh] 

DUMB 
4273,4 

(+0.3%) 

6894.0 

(+0.1%) 

0.3683 

(−44.3%) 

323.2 

(+86.1%) 

0.0466  

(+77.0%) 

OFF-MILP 
4259.8  

(0.0%) 

6885.2 

(0.0%) 

0.6619 

(0.0%) 

173.7  

(0.0%) 

0.0252  

(0.0%) 

MPC-HIER 
4262.9 

(+0.1%) 

6924.0 

(+0.6%) 

0.6585 

(−0.5%) 

176.1  

(+1.4%) 

0.0254  

(+0.8%) 

MPC-DIST 
4263.0 

(+0.1%) 

6888.0 

(+0.2%) 

0.6783 

(+2.5%) 

173.9 

(+0.1%) 

0.0252 

(0.0%) 
1 Total fuel consumption, 2 total charging energy, 3 utilization of RES energy, 4 total charging cost,  
5 specific charging cost 

 
Figure 6. Aggregate SoE and charging power profiles obtained by different charging 

approaches applied to distributive battery model, with RES considered 
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In addition, when comparing the performance of control strategies, an important practical aspect 

is the optimization execution time, whose values are listed in Table 3 (executed on a computer 

with Intel(R) Core(TM) i5-8300H CPU @ 2.30GHz with 8 GB RAM installed). The optimal 

problem preparation time within YALMIP is included as well, as the initial creation of the 

parametric optimization model is a complex and time-consuming task. For the one-week 

horizon it takes 2.3 hours for the model preparation, and the optimization problem is then solved 

in 0.97 seconds when RES is not considered, and in 25.4 seconds when it is considered. The 

preparation time of 2.3 hours may seem long, but it is performed offline and only once and it, 

thus, does not represent an obstacle for application. The results demonstrate that the MPC-

HIER strategy has by two orders of magnitude lower optimization execution time than the 

MPC-DIST strategy if RES is considered. The MPC-DIST optimization problem takes 24.8 

seconds on average to execute, leading to a one-week scenario simulation lasting 4.6 hours. 

However, 24.8 seconds is still significantly lower than the time discretization of 15 minutes, 

meaning that it is satisfying for a real-time application for the given EV fleet size. 

Table 3. Comparison of execution times for optimizations with and without RES considered 

Charging 

profile 

Optimal problem 

preparation time [s] 

Solving one 

optimization problem [s] 

Simulation time over 

one-week period [s] 

No RES considered 

OFF-LP 8332.43 (2.3 hours) 0.97 - 

MPC-HIER 5.43 0.02 13.10 

MPC-DIST 37.12 0.05 26.41 

RES considered 

OFF-MILP 8332.43 (2.3 hours) 25.40 - 

MPC-HIER 1.18 0.71 477.12 (8 minutes) 

MPC-DIST 30.33 24.77 16643.23 (4.6 hours) 

CONCLUSION 

This paper has explored solutions for real-time electric vehicle (EV) fleet charging 

management, aiming to minimize charging costs and maximize exploitation of renewable 

energy sources (RES). The optimization performed offline over the full-time horizon was taken 

as the globally optimal benchmark, to assess the proposed real-time model predictive control 

(MPC) charging strategies. The proposed so-called single-level optimization was formulated in 

the form of linear programming (LP) in the case of no RES production, or in the form of mixed 

integer linear programming (MILP) in the case of RES production, to directly optimize charging 

power of each individual EV within the fleet. It was compared against an alternative 

hierarchical approach, performing the charging optimization on the aggregate level and 

distributing the obtained aggregate charging power over individual EVs through a heuristic 

method. A simple so-called dumb charging method performing charging with the maximum 

power immediately upon EV connection was additionally utilized to serve as a baseline for 

assessment of the other, more advanced methods. 

The proposed strategies have been demonstrated for the scenario of virtually electrified 

conventional delivery vehicle fleet, whose charging schedules and power demand time profiles 
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were derived from experimental data and EV model simulations. In the absence of RES, the 

dumb charging results in around 10% higher charging cost compared to the offline LP 

benchmark. The hierarchical MPC approaches the offline benchmark within a margin of 2.4%, 

while this margin equals only 0.1% for the main, single-level MPC. In the case of RES 

production included, the dumb charging results in 86% higher charging cost compared to the 

offline MILP benchmark, while this cost excess equals only 1.4% in the case of hierarchical 

strategy. The proposed single-level charging is almost equivalent to the global optimum. In 

terms of related optimization execution time, the hierarchical method yields superior 

performance with respect to single-level approach (two orders of magnitude faster when RES 

production is considered). Although being longer, the execution time of single-level 

optimization (around 25 s) is still significantly lower than the charging sampling time of 15 

minutes, thus making it appropriate for the case of considered fleet size. 

Future work could be focused on the scalability of these charging methods for larger EV fleets. 

Also, as the considered idealized model input time profiles are typically not known exactly in 

advance in real applications, the future work could include sensitivity analyses related to 

predictions uncertainties. 
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APPENDIX 

The expression for the grid power (10) which includes logical relations should be transferred 

to an equivalent form of inequality constraints, to be appropriate for MILP solvers [22]. Firstly, 

the minimum and maximum values of the function −𝑃𝑟𝑒𝑠(𝑘) + ∑ 𝑃𝑐,𝑖(𝑘)
𝑁𝑣
𝑖=1  are defined as: 

𝑚 = min (−𝑃𝑟𝑒𝑠(𝑘) +∑ 𝑃𝑐,𝑖(𝑘)
𝑁𝑣

𝑖=1
) = −max(𝑃𝑟𝑒𝑠(𝑘))  

(A1a) 

𝑀 = max (−𝑃𝑟𝑒𝑠(𝑘) +∑ 𝑃𝑐,𝑖(𝑘)
𝑁𝑣

𝑖=1
) = 𝑁𝑣𝑃𝑐,max,𝑖 

(A1b) 

which are derived based on the aggregate charging power limits: 0 ≤ ∑ 𝑃𝑐,𝑖(𝑘)
𝑁𝑣
𝑖=1 ≤ 𝑁𝑣𝑃𝑐,max,𝑖. 

By using the binary integer variable 𝑧(𝑘) defined by Eq. (22), Eq. (10) can be rewritten as: 

[𝑧(𝑘) = 0] → [𝑃𝑔(𝑘) = 0], [𝑧(𝑘) = 1] → [𝑃𝑔(𝑘) = −𝑃𝑟𝑒𝑠(𝑘) +∑ 𝑃𝑐,𝑖(𝑘)
𝑁𝑣

𝑖=1
] . 

(A2) 

The expression (A3) can be written in the following form of inequalities [22]: 

𝑃𝑔(𝑘) ≤ 𝑀𝑧(𝑘), 
(A3a) 

𝑃𝑔(𝑘) ≥ 𝑚𝑧(𝑘), (A3b) 

𝑃𝑔(𝑘) ≤ −𝑃𝑟𝑒𝑠(𝑘) +∑ 𝑃𝑐,𝑖(𝑘)
𝑁𝑣

𝑖=1
−𝑚(1 − 𝑧(𝑘)), 

(A3c) 

𝑃𝑔(𝑘) ≥ −𝑃𝑟𝑒𝑠(𝑘) +∑ 𝑃𝑐,𝑖(𝑘)
𝑁𝑣

𝑖=1
−𝑀(1 − 𝑧(𝑘)). 

(A3d) 

It can be easily checked that the first two inequalities (A3a) and (A3b) forces the grid power to 

be zero (𝑃𝑔(𝑘) = 0), when 𝑧(𝑘) = 0, while two other inequalities (A3c) and (A3d) are relaxed 
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in that case (i.e., satisfied for any charging power request ∑ 𝑃𝑐,𝑖(𝑘)
𝑁𝑣
𝑖=1  and RES power 𝑃𝑟𝑒𝑠(𝑘)). 

On the other hand, when 𝑧(𝑘) = 1, the first two constraints (A3a) and (A3b) are relaxed 

(according to the definitions in Eq. (A1)), while the remaining two forces the equality 𝑃𝑔(𝑘) =

−𝑃𝑟𝑒𝑠(𝑘) + ∑ 𝑃𝑐,𝑖(𝑘)
𝑁𝑣
𝑖=1  to be satisfied, as required by Eq. (A2). 

 

Now, it remains to transfer the logical relation from Eq. (22) to the form of inequalities. This 

logical relation corresponds to the equivalence as: 

[−𝑃𝑟𝑒𝑠(𝑘) +∑ 𝑃𝑐,𝑖(𝑘)
𝑁𝑣

𝑖=1  

≥ 0] ↔ [𝑧(𝑘) = 1]. (A4) 

According to [22], the following equivalent inequalities can be established:  

𝑃𝑟𝑒𝑠(𝑘) −∑ 𝑃𝑐,𝑖(𝑘)
𝑁𝑣

𝑖=1
≤ 𝑀′(1 − 𝑧(𝑘)), (A5a) 

𝑃𝑟𝑒𝑠(𝑘) −∑ 𝑃𝑐,𝑖(𝑘)
𝑁𝑣

𝑖=1
≥ 𝜀 + (𝑚′ − 𝜀)𝑧(𝑘). (A5b) 

where 𝜀 is a small positive constant (set to 10−6), and 𝑚′ and 𝑀′ are defined as: 

𝑚′ = min (𝑃𝑟𝑒𝑠(𝑘) −∑ 𝑃𝑐,𝑖(𝑘)
𝑁𝑣

𝑖=1
) = −𝑁𝑣𝑃𝑐,max,𝑖, 

(A6a) 

𝑀′ = max(𝑃𝑟𝑒𝑠(𝑘) −∑𝑃𝑐,𝑖(𝑘)

𝑁𝑣

𝑖=1

) = max(𝑃𝑟𝑒𝑠) . (A6b) 

In conclusion, the set of inequalities (A3) and (A5) fully represents the starting logical 

expression (10). 
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