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ABSTRACT 

This paper presents an approach to electric city bus scheduling optimization, which results in a 

Pareto frontier in two conflicting criteria being minimized: the number of buses required to 

serve predetermined routes and the excess of distance travelled (so-called deadhead distance). 

These criteria reflect the city bus fleet investment and operational costs, respectively. The 

sequential optimization strategy is executed in two phases: 1) finding the minimal number of 

buses, and 2) gradually incrementing the number of buses from the minimal one and minimizing 

the deadhead distance. Two optimization methods are proposed: mixed integer linear 

programming and genetic algorithm, where the former provides the optimal solution but it is 

limited to small-scale problems (fleets), while the latter can deal with large fleets but generally 

results in a nearly optimal solution. The optimization approach is demonstrated on a custom-

generated dataset reflecting characteristics of real-world city bus transport systems. 
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1. INTRODUCTION 

In recent years, electric vehicles (EVs) have grown in popularity due to their environmental and 

social benefits [1]. As the cost of battery electric vehicles drops down and the vehicle range 

increases, their share continuously grows [2]. The city bus transport system is a natural 

candidate for electrification due to the strong environmental benefits and predetermined and 

relatively short routes allowing for exploiting the end station fast charging for reduced battery 

capacity and cost [3]. Typical tasks associated with establishing a city bus fleet, such as line 

planning, vehicle scheduling [4], timetabling [5], and crew scheduling [6], become more 

complex when applied to e-buses when compared to conventional (Diesel) buses. This is 

because of restricted vehicle range and relatively long charging time. 

City bus scheduling is a complex problem that falls under the vehicle scheduling problem (VSP) 

[7]. The essence of VSP is to assign routes and timetabled trips to vehicles with the aim of 

minimizing the fleet size and operational costs. There are two main categories of VSP 

depending on whether a single-depot (SDVSP, [8-10]) or a more complex multi-depot 

(MDVSP, [11]) transport system configuration is concerned. The optimization methods used 

include exact ones such as mixed integer linear programming [12] and heuristic approaches 

such as genetic algorithms [13]. Furthermore, in order to improve the overall cost effectiveness, 

there is a noticeable trend towards the utilization of mixed fleets, leading to the VSP with 

multiple vehicle types (MVTVSP, [14]). On the other hand, the focus can be shifted to fleets 

propelled by different types of fuel [15], where the Diesel bus fleet poses traditional challenges, 
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while e-bus scheduling needs to address the distinct range and charging delay limitations. Static 

models of transport system have commonly been used [16], with the recent trend of employing 

dynamic models to handle the unpredictable nature of city traffic [17]. Another layer of 

complexity is introduced when partial recharging policy is concerned instead of more common, 

full recharging policy to provide additional operational savings [18, 19]. 

Building upon existing literature, reference [20] proposes a linear mathematical approach to 

electric bus scheduling, incorporating specific elements such as partial charging and charging 

at varying locations. This paper aims to extend upon this approach by adding constraints to 

ensure buses are fully charged by the end of each day (charge sustaining condition), while 

locally considering the state of energy for each bus, the power output of individual chargers, 

and the specific number of buses that can be charged at each station, underscoring the non-

uniformity across buses and chargers. Moreover, a sequential optimization is concerned, where 

in addition to minimizing the total number of buses in operation, one minimizes the distance 

travelled without passengers between end stations of different routes (so-called deadhead 

distance), thereby offering a broader range of optimal solutions in terms of Pareto optimality. 

2. PROBLEM DEFINITION 

2.1. Electric city bus scheduling framework 

This study attempts to tackle some major challenges of electric bus scheduling. The buses are 

allowed to operate on partial charges, and being charged both at main depots and designated 

route stops (end stations). Different charging stations can have different values of (i) maximum 

charging power and (ii) capacities to handle buses simultaneously. A general case of 

uninterrupted, full day operation satisfying the charging sustaining condition is concerned, as 

opposed to special cases based on, for instance, operation pauses for depot slow charging during 

night. It is assumed that the bus lines, timetables, location of charging stations and the number 

of charging spots per charger are predetermined. 

Fig. 1 illustrates the e-bus scheduling optimization process, which starts by minimizing the 

number of electric buses needed to satisfy the predetermined timetables. The minimum fleet 

size is typically associated with a long deadhead distance, i.e. the total distance travelled by 

empty buses to switch between different lines (i.e., their end stations) to serve them and/or 

recharge on their charging stations. In other words, the minimum bus fleet investment cost is 

compromised by a higher operating cost (e.g., higher energy and maintenance costs). In order 

to obtain a set of optimal solutions in both criteria, i.e. to generate a Pareto frontier, the number 

of buses is incremented by one and a deadhead minimization problem is solved. The process 

continues until the deadhead distance saturates to its lower value. 
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Fig. 1. Flowchart of e-bus scheduling sequential optimization process.  

When optimizing the schedule, it is imperative to address both conventional scheduling 

constraints and those that are unique to electric vehicles. The conventional constraints 

encompass the following: 

1. Every service trip is allocated to only one vehicle. 

2. Each vehicle follows a feasible sequence of service trips, meaning the order and 

arrangement of trips for each vehicle must be logical and achievable within given time 

frames and operational conditions. 

Electric vehicles bring additional constraints related to battery state-of-energy (SoE) limits: 

1. The SoE must be high enough to complete the service trip or reach the nearest depot or 

charging station. 

2. Buses can be recharged only at specific, predetermined charging station locations, and 

the battery cannot exceed its maximum value. 

3. Only a limited number of buses can be recharged at a charging station at the same time 

(depending on the predetermined number of charging spots). 

4. Each bus must finish its day with a fully charged battery, i.e. the final SOE must be 

equal to the initial SOE assumed to be at the maximum level (charge sustaining 

condition). 

2.2.  Formal problem formulation 

Let 𝑁 represent the set of service trips awaiting for scheduling, and let 𝐾 represent the set of 

available vehicles, where every vehicle 𝑘 ∈ 𝐾 carries a battery defined by its minimal and 

maximal SoE, 𝑆𝑜𝐸𝑚𝑖𝑛
𝑘  and 𝑆𝑜𝐸𝑚𝑎𝑥

𝑘 , respectively. For optimization to yield a feasible solution, 

the initial set of vehicles 𝐾 should be set at a sufficiently high level. Distinct from the set 𝑁 

there are two specific points: 𝐷0 and 𝐷𝑛. 𝐷0 marks the depot starting position where vehicles 

initiate their routes, while 𝐷𝑛 indicates the concluding point where vehicles conclude their 

service trips and revert back to the depot. Each service trip, denoted by an index 𝑖 in the set 𝑁, 

possesses the following distinct attributes:  

• starting time: 𝑠𝑖,  

• duration: 𝑡𝑖, 

• energy required: 𝑐𝑖, 

• starting 𝑆𝑖 and end location 𝐸𝑖. 
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Moreover, each trip 𝑖 has a defined set of feasible succeeding service trips, 𝐹(𝑖), where a service 

trip 𝑗 is deemed to feasibly succeed a service trip 𝑖 if the condition 𝑠𝑖 + 𝑡𝑖 + 𝑡𝑖𝑗 ≤ 𝑠𝑗 is satisfied. 

Here, 𝑡𝑖𝑗 marks the time needed to transit from the endpoint of trip 𝑖 to the starting point of trip 

𝑗, while the energy consumed during this transit period is quantified by 𝑐𝑖𝑗. A symmetrical set, 

𝐵(𝑖), lists trips 𝑗 that can precede trip 𝑖: 𝑠𝑗 + 𝑡𝑗 + 𝑡𝑖𝑗 < 𝑠𝑖.  

Additionally, a set 𝑅 encompasses all charging stations. Each charging station 𝑟 ∈ 𝑅, is 

distinguished by: 

• Its location: situated either at starting or end stations of trips (𝑆𝑖, 𝐸𝑖) or at the depot (𝐷0, 

𝐷𝑛),  

• Charging power 𝑞𝑟: (in Wh/per unit time) at which an electric bus is recharged,  

• Charging spot capacity 𝑁𝑟: maximum number of buses a charger can handle at once, 

based on available charging spots.  

The constants 𝑡𝑖𝑟 and 𝑡𝑟𝑗 stand for the time required to move from the end of a service trip i to 

a charger r and from the charger r to the service trip j, respectively. The energy costs associated 

with these routes are denoted by 𝑐𝑖𝑟 and 𝑐𝑟𝑗. 

Furthermore, each charger 𝑟 possesses a charging event set, 𝑇𝑟, equivalent in count to the 

number of service trips. These charging events effectively provide a time discretization of the 

entire transport system by marking potential start or end times for charging. Specifically, the 

beginning time 𝑠𝑟𝑡 for charging event 𝑡 from service trip 𝑖 is defined as 𝑠𝑟𝑡 = 𝑠𝑖 + 𝑡𝑖 + 𝑡𝑖𝑟, 

where charging events are organized chronologically by start times for each charger.  

Moreover, to enhance optimization efficiency, service trips are aligned with charging events. 

To capture these relationships, specific sets are defined for each charger 𝑟 ∈ 𝑅, each charging 

event 𝑡 ∈ 𝑇𝑟 on charger 𝑟, and each service trip 𝑖 ∈ 𝑁: 

• 𝐹𝑐(𝑟, 𝑖) represents charging events that are initiated after trip 𝑖 has reached charger 𝑟: 

𝑠𝑟𝑡 ≥ 𝑠𝑖 + 𝑡𝑖 + 𝑡𝑖𝑟, 

• 𝐵𝑐(𝑟, 𝑖) denotes charging events that occur before trip 𝑖 reaches charger 𝑟, 

• 𝐹𝑖(𝑟, 𝑡) indicates trips starting after charging event 𝑡: 𝑠𝑖 ≥ 𝑠𝑟𝑡 + 𝑡𝑖𝑟, 

• 𝐵𝑖(𝑟, 𝑡) captures trips ending before charging event 𝑡 at charger 𝑟. 

Based on the above foundational elements, several decision variables to be optimized have been 

introduced in the system: 

• 𝑥𝑖𝑗
𝑘 : Binary decision variable indicating whether the service trip 𝑗 ∈ 𝑁 succeeds the 

service trip 𝑖 ∈ 𝑁 using the vehicle 𝑘 ∈ 𝐾, valid only if 𝑗 ∈ 𝐹(𝑖). 

• 𝑦𝑖𝑟𝑡
𝑘 : Binary decision variable determining if the vehicle 𝑘 ∈ 𝐾 recharges at the event 

𝑡 ∈ 𝑇𝑟 on the charger spot 𝑟 ∈ 𝑅 after completing the service trip  𝑖 ∈ 𝑁. 

• 𝑧𝑟𝑡𝑗
𝑘 : Binary decision variable marking if the vehicle 𝑘 ∈ 𝐾 undertakes the service trip 

𝑗 ∈ 𝑁  after charging at the event 𝑡 ∈ 𝑇𝑟 on the charger 𝑟 ∈ 𝑅. 

• 𝑤𝑟𝑡
𝑘 : Binary decision variable signifying if the vehicle 𝑘 ∈ 𝐾  continues charging at the 

subsequent event 𝑡 + 1 ∈ 𝑇𝑟 on the charger 𝑟 ∈ 𝑅 after charging at charging event 𝑡 ∈
𝑇𝑟 on the same charger. 

Fig. 2 visualizes the role of above decision variables and the overall scheduling mechanism. 
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Fig. 2. Visualization of vehicle scheduling problem definition. 

The battery SoE of kth bus is defined by variables 𝑒𝑖
𝑘 and 𝜀𝑟𝑡

𝑘 . The variable 𝑒𝑖
𝑘 signifies the 

battery SoE of the bus just before starting service trip 𝑖 ∈ 𝑁, ensuring the bus has enough charge 

for the trip. On the other hand, 𝜀𝑟𝑡
𝑘  represents the battery SoE before it begins charging at event 

𝑡 ∈ 𝑇𝑟 on charger 𝑟 ∈ 𝑅. This not only indicates the battery depletion level but also, when 

compared to SoE upper limit 𝑆𝑜𝐸𝑚𝑎𝑥
𝑘 , helps determine the necessary charging amount and 

duration.  

3. MIXED-INTEGER LINEAR POGRAMMING FORMULATION 

By utilizing mathematical optimization based on the Mixed Integer Linear Programming 

Algorithm (MILP), a structured approach for solving the bus scheduling problem defined in 

Section 2 is proposed, which yields Pareto optimal solution in terms of minimization of total 

number of buses and deadhead distance. MILP solvers inherently possess certain capabilities, 

which include achieving optimal solution, ensuring solution convergence, and terminating 

automatically if they cannot satisfy the constraints [21]. In this study, the coin-or branch and 

cut solver, accessible via the PuLP library in Python is utilized to solve the MILP formulation. 

 

3.1. Objective functions 

To optimize the fleet usage while meeting the service demands, it is first aimed to minimize 

the number of electric buses deployed (see the second block in Fig. 1). The total number of 

buses in the system is determined by those dispatched from the depot, as buses are introduced 

exclusively from there (this does not restrict buses from shifting between lines during their 

journey). Therefore, the objective function achieves this by tracking the initial trip 𝑗 of each 

bus 𝑘 from the depot 𝐷0, and is formulated as:  

min ∑ ∑ 𝑥𝐷0𝑗
𝑘

𝑗∈𝑁𝑘∈𝐾

.  
(1) 

The second objective aims to minimize the total deadhead distance (see the third block in Fig. 

1), which sums the distances the buses travel outside of regular service. They include the 

distance for line switching between consecutive service trips 𝑖 and 𝑗 (𝑑𝑖𝑗), the distance to access 

a charger 𝑟 from an ith service trip endpoint (𝑑𝑖𝑟), and the distance from charger 𝑟 to the next 

service trip 𝑗 (𝑑𝑟𝑗) after charging is complete: 
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𝑚𝑖𝑛 ∑ ∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗
𝑘

𝑗∈𝐹(𝑖)𝑖∈𝑁𝑘∈𝐾

+ ∑ ∑ ∑ ∑ 𝑑𝑖𝑟𝑦𝑖𝑟𝑡
𝑘

𝑡∈𝐹𝑐(𝑟,𝑖)𝑗∈𝐹(𝑖)𝑖∈𝑁𝑘∈𝐾

+ ∑ ∑ ∑ ∑ 𝑑𝑟𝑗𝑧𝑟𝑡𝑗
𝑘

𝑗∈𝐹𝑖(𝑟,𝑡)𝑡∈𝑟𝑟∈𝑅𝑘∈𝐾

. 

 (2) 

3.2.  Vehicle scheduling constraints 

To ensure that each service trip is served only by one bus, the following constraint is set: 

 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑖∈𝐵(𝑗)𝑘∈𝐾

+ ∑ ∑ ∑ 𝑧𝑟𝑡𝑗
𝑘

𝑡∈𝐵𝑐(𝑟,𝑗)𝑟∈𝑅𝑘∈𝐾

= 1; ∀𝑗 ∈ 𝑁 
 

(3) 

Moreover, to guarantee a continuous flow of electric bus operations, a flow constraint is 

imposed for each service trip. This constraint mandates that after a bus completes a service trip 

or charging event, it needs to proceed to its next activity: 

 

∑ 𝑥𝑖𝑗
𝑘

𝑖∈𝐵(𝑗)

+ ∑ ∑ 𝑧𝑟𝑡𝑗
𝑘

𝑡∈𝐵𝑐(𝑟,𝑗)𝑟∈𝑅

= ∑ 𝑥𝑗𝑙
𝑘

𝑙∈𝐹(𝑗)

+ ∑ ∑ 𝑦𝑗𝑟𝑡
𝑘

𝑡∈𝐹𝑐(𝑟,𝑗)𝑟∈𝑅

; ∀𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾 
 (4) 

For each charging station, there is a need to ensure that the number of vehicles charging 

simultaneously does not exceed its charging spot capacity Nr:  

 

∑ ∑ 𝑦𝑗𝑟𝑡
𝑘

𝑗∈𝐵𝑖(𝑟,𝑡)𝑘∈𝐾

+ ∑ 𝑤𝑟𝑡−1
𝑘

𝑘∈𝐾

≤ 𝑁𝑟;  ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇𝑟 
 (5) 

Moreover, when a bus arrives to charging station, it needs to depart from charging station after 

completing its specified charging event:  

 

∑ 𝑦𝑖𝑟𝑡
𝑘

𝑖∈𝐵𝑖(𝑟,𝑡)

+ 𝑤𝑟𝑡−1
𝑘 = ∑ 𝑧𝑟𝑡𝑗

𝑘

𝑗∈𝐹𝑖(𝑟,𝑡)

+ 𝑤𝑟𝑡
𝑘 ;  ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇𝑟 , ∀𝑘 ∈ 𝐾 

 (6) 

To ensure that the total number of deployed buses matches the predetermined fleet size 𝑝 in the 

case of deadhead distance minimization step (Fig. 1), the following constraint is introduced:  

 

∑ 𝑥𝐷0𝑗
𝑘

𝑗∈𝑁

= 𝑝; ∀𝑘 ∈ 𝐾 
 (7) 

 

3.3.  Energy consumption constraints 

First, every vehicle is set to begin the operating day with the battery charged at its upper limit: 

 

𝑒𝐷0

𝑘 = 𝑆𝑜𝐸𝑚𝑎𝑥
𝑘 ;  ∀𝑘 ∈ 𝐾   (8) 
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Furthermore, each bus must maintain its energy above the lower limit 𝑆𝑜𝐸𝑚𝑖𝑛
𝑘 , while 

considering its service trips, transfers, and routes to chargers whose SoE demands are specified 

by the constants 𝑐𝑖, 𝑐𝑖𝑗, and 𝑐𝑖𝑟, respectively: 

 

𝑒𝑖
𝑘 ≥ 𝑆𝑜𝐸𝑚𝑖𝑛

𝑘 + 𝑐𝑖 + ∑ 𝑥𝑖𝑗
𝑘 𝑐𝑖𝑗

𝑗∈𝐹(𝑖)

+ ∑ ∑ 𝑦𝑖𝑟𝑡
𝑘

𝑡∈𝐹𝑐(𝑟,𝑖)

𝑐𝑖𝑟

𝑟∈𝑅

; ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾 
 (9) 

The following two constraints provides energy conservation between consecutive service trips, 

where the first one ensures that the bus does not exceed its battery capacity, while the second 

one guarantees that it retains enough energy for subsequent service trip: 

 

𝑒𝑗
𝑘 ≤ 𝑒𝑖

𝑘 − 𝑥𝑖𝑗
𝑘 (𝑐𝑖 + 𝑐𝑖𝑗) + 𝑆𝑜𝐸𝑚𝑎𝑥

𝑘 (1 − 𝑥𝑖𝑗
𝑘 ); ∀𝑗 ∈ 𝑁, ∀𝑖 ∈ 𝐵(𝑗), ∀𝑘 ∈ 𝐾  (10) 

𝑒𝑗
𝑘 ≥ 𝑒𝑖

𝑘 − 𝑥𝑖𝑗
𝑘 (𝑐𝑖 + 𝑐𝑖𝑗) − 𝑆𝑜𝐸𝑚𝑎𝑥

𝑘 (1 − 𝑥𝑖𝑗
𝑘 ); ∀𝑗 ∈ 𝑁, ∀𝑖 ∈ 𝐵(𝑗), ∀𝑘 ∈ 𝐾  (11) 

The energy level of a bus, before embarking on a service trip, should reflect the balance of 

energy gained during its last charge and the energy consumed traveling from the last charging 

point to the trip start:  

 

𝑒𝑗
𝑘 ≤ 𝜀𝑟𝑡

𝑘 + 𝑧𝑟𝑡𝑗
𝑘 ((𝑠𝑗 − 𝑡𝑟𝑗 − 𝑠𝑟𝑡)𝑞𝑟 − 𝑐𝑟𝑗) + 𝑆𝑜𝐸𝑚𝑎𝑥

𝑘 (1 − 𝑧𝑟𝑡𝑗
𝑘 ); ∀𝑗 ∈ 𝑁, ∀𝑟

∈ 𝑅, ∀𝑡 ∈ 𝐵𝑐(𝑟, 𝑗), ∀𝑘 ∈ 𝐾 

 (12) 

The following two constraints manage e-bus energy levels utilizing a large enough constant M 

for flexibility. The first constraint ensures that energy in a bus after charging remains within its 

maximum capacity when adjusted for the next trip. The 𝑀-term provides flexibility if the trip 

is not scheduled:  

 

𝑆𝑜𝐸𝑚𝑎𝑥
𝑘 ≥ 𝑒𝑗

𝑘 + 𝑐𝑟𝑗 − 𝑀𝑞𝑟(1 − 𝑧𝑟𝑡𝑗
𝑘 ); ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇𝑟 , ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐹𝑖(𝑟, 𝑡)  (13) 

The second constraint oversees energy levels during charging to ensure that the post-charge 

energy does not exceed the maximum one, while considering the next charging event, with the 

note that if the bus does not advance to its next charge, the 𝑀-term offers flexibility:  

 

𝑆𝑜𝐸𝑚𝑎𝑥
𝑘 ≥ 𝜀𝑟𝑡+1

𝑘 − 𝑀𝑞𝑟(1 − 𝑤𝑟𝑡
𝑘 ); ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇𝑟 , ∀𝑘 ∈ 𝐾  (14) 

The following constraint ensures that a charged bus has adequate energy to travel from the 

charger to the next service trip:  

 

𝑒𝑗
𝑘 + 𝑐𝑟𝑗 +  𝑀𝑞𝑟(1 − 𝑧𝑟𝑡𝑗

𝑘 ) ≥ 𝑆𝑜𝐸𝑚𝑖𝑛
𝑘 + 𝑧𝑟𝑡𝑗

𝑘 𝑐𝑟𝑗; ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇𝑟 , ∀𝑘 ∈ 𝐾, ∀𝑗 ∈

𝐹𝑖(𝑟, 𝑡) 

 (15) 

The following two equations limit the energy level of a bus when it arrives at a charging station 

after its service trip. The first equation sets a maximum energy limit, ensuring the bus does not 

have more energy than expected after its trip: 

 



8 

 

𝜀𝑟𝑡
𝑘 ≤ 𝑒𝑖

𝑘 − 𝑦𝑖𝑟𝑡
𝑘 (𝑐𝑖 + 𝑐𝑖𝑟) + 𝑆𝑜𝐸𝑚𝑎𝑥

𝑘 (1 − 𝑦𝑖𝑟𝑡
𝑘 ); ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇𝑟 , ∀𝑘 ∈ 𝐾, ∀𝑖

∈ 𝐵𝑖(𝑟, 𝑡) 

 (16) 

The second equation establishes a minimum energy threshold to prevent the bus from arriving 

with an inadequate energy level: 

 

𝜀𝑟𝑡
𝑘 ≥ 𝑒𝑖

𝑘 − 𝑦𝑖𝑟𝑡
𝑘 (𝑐𝑖 + 𝑐𝑖𝑟) − 𝑆𝑜𝐸𝑚𝑎𝑥

𝑘 (1 − 𝑦𝑖𝑟𝑡
𝑘 ); ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇𝑟 , ∀𝑘 ∈ 𝐾, ∀𝑖

∈ 𝐵𝑖(𝑟, 𝑡) 

 (17) 

Furthermore, the following constraint delineates the maximum energy that can be charged 

during an event, accounting for the time gap between consecutive charging events. Specifically, 

if two successive charging events have the same start time (influenced by the start times and 

durations of service trips), no energy is charged between them: 

 

𝜀𝑟𝑡+1
𝑘 ≤ 𝜀𝑟𝑡

𝑘 + 𝑤𝑟𝑡
𝑘 (𝑠𝑟𝑡+1 − 𝑠𝑟𝑡)𝑞𝑟 + 𝑆𝑜𝐸𝑚𝑎𝑥

𝑘 (1 − 𝑤𝑟𝑡
𝑘 ); ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇𝑟 , ∀𝑘 ∈ 𝐾  (18) 

The constraint below sets a limit on the energy that can be charged during an event. It does so 

by considering the maximum energy that can be added before the next charging event starts on 

the same charger if the bus moves on to the next service trip after charging: 

 

𝑒𝑗
𝑘 + 𝑐𝑟𝑗 − 𝜀𝑟𝑡

𝑘 − 𝑆𝑜𝐸𝑚𝑎𝑥
𝑘 (1 − 𝑧𝑟𝑡𝑗

𝑘 ) ≤ (𝑠𝑟𝑡+1 − 𝑠𝑟𝑡)𝑞𝑟; ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇𝑟 , ∀𝑘

∈ 𝐾, ∀𝑗 ∈ 𝐹𝑖(𝑟, 𝑡) 

 (19) 

Furthermore, the constraints below ensure that the energy charged during a charging event 

remains non-negative. This is determined by the energy requirements on the subsequent trip or 

the next charging event.  

 

𝑒𝑗
𝑘 + 𝑐𝑟𝑗 − 𝜀𝑟𝑡

𝑘 + 𝑆𝑜𝐸𝑚𝑎𝑥
𝑘 (1 − 𝑧𝑟𝑡𝑗

𝑘 ) ≥ 0; ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇𝑟 , ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐹𝑖(𝑟, 𝑡)  (20) 

 

𝜀𝑟𝑡+1
𝑘 − 𝜀𝑟𝑡

𝑘 + 𝑆𝑜𝐸𝑚𝑎𝑥
𝑘 (1 − 𝑤𝑟𝑡

𝑘 ) ≥ 0; ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇𝑟 , ∀𝑘 ∈ 𝐾  (21) 

Finally, it is necessary to ensure that buses are fully charged at the end of the operating day. 

First, it is stipulated that each bus needs to undergo charging before being parked at the depot 

for the start of the next operating day:   

 

∑ ∑ 𝑧𝑟𝑡𝐷𝑛

𝑘

𝑡∈𝑇𝑟𝑟∈𝑅

= 1; ∀𝑘 ∈ 𝐾 
 (22) 

Next, it is ensured that each bus is fully charged when completing the daily operation: 

 

𝜀𝑟𝑡
𝑘 + (𝑠𝑟𝑡+1

𝑘 − 𝑠𝑟𝑡
𝑘 )𝑞𝑟 = 𝑆𝑜𝐸𝑚𝑎𝑥

𝑘 − 𝑀(1 − 𝑧𝑟𝑡𝐷𝑛

𝑘 ),  ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇𝑟 , ∀𝑘 ∈ 𝐾  (23) 

Finally, the system ensures that the conclusion of the final charging event for each bus should 

occur early enough to allow the bus adequate time to be prepared for its initial trip on the 

subsequent day: 
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𝑠𝑟𝑡+1
𝑘 ≤ 𝑠𝑗

𝑘 + 𝑡𝑟𝑗 + 1440 + 𝑀(1 − 𝑧𝑟𝑡𝐷𝑛

𝑘 ),  ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇𝑟 ,∀𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾  (24) 

where the constant 1440 represents a full day measured in minutes. 

 

3.4.  Domain constraints 

The domain constraints specify the permissible values for the decision variables and the 

energy state variables: 

𝑥𝑖𝑗
𝑘 ∈ {0,1}; ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁 ∪ 𝐷0 ∪ 𝐷𝑛, ∀𝑗 ∈ 𝐹(𝑖)  (25) 

𝑧𝑟𝑡𝑗
𝑘 ∈ {0,1}; ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇𝑟 , ∀𝑗 ∈ 𝐹𝑖(𝑟, 𝑡)  (26) 

𝑦𝑖𝑟𝑡
𝑘 ∈ {0,1}; ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝐹𝑐(𝑟, 𝑖)  (27) 

𝑤𝑟𝑡
𝑘 ∈ {0,1}; ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇𝑟  (28) 

𝜀𝑟𝑡
𝑘 ≥ 0; ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇𝑟   (29) 

𝑒𝑖
𝑘 ≥ 0; ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁  (30) 

4. GENETIC ALGORITHM APPROACH 

Genetic algorithms (GA), inspired by biological evolution, offer a unique and general approach 

to optimization by simulating natural selection [22]. As such, they can handle complex and 

constraint-heavy MILP formulations. When compared to MILP algorithms, the advantage of 

GAs is that they can handle large-scale problems (e.g. a large number of trips, charging stations, 

constraints), while the disadvantage is they typically do not provide optimal solution (but rather 

converge in a nearly optimal solution, which is closer to the optimal solution if the number of 

iterations is set to be higher). Thus, in the context of e-bus scheduling optimization, the GA 

approach is employed as an alternative method for large-scale problems. 

Formation of initial population of the GA entailed solving a relaxed MILP problem for 14 sub-

formulations. All 14 sub-formulations utilize either objective function (1) or (2), depending on 

the optimization phase (see Fig. 1), while adhering to the vehicle scheduling constraints (3) to 

(7) and the domain constraints (25)-(30). Between the remaining constraints (8)-(24), two 

randomly selected constraints are added to each sub-formulation. Furthermore, each of these 

constraints is present in at least one sub-formulation. This approach is aimed at fostering a 

swifter convergence of the GA.  

The GA employed the same solution representation as in the case of MILP formulation, where 

the binary decision variables 𝑥𝑖𝑗
𝑘 , 𝑧𝑟𝑡𝑗

𝑘 , 𝑦𝑖𝑟𝑡
𝑘 , and 𝑤𝑟𝑡

𝑘  are optimized to obtain the final solution 

(see Fig 2). To ensure feasibility and optimality, the GA fitness function was carefully designed 

(see Algorithm 1 below). It assigns a lower value to solutions that use more vehicles and 

correspond to more constraint violations.  
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Algorithm 1: Fitness function of genetic algorithm 

FUNCTION fitness_function(solution: Array) -> float: 

    # Decompose the solution into individual decision variables 

        x, y, z, w = reconstruct(solution) 

    # Translate the values into corresponding bus events 

        bus_events = generate_bus_events(x, y, z, w) 

    # Initialize violations counter 

        number_of_violations = 0 

    # Check for scheduling constraints 

        number_of_violations = CHECK_VEHICLE_SCHEDULING_CONSTRAINTS(bus_events) 

    # Initialize SoE penalty 

        soe_penalty = 0 

    # Compute energy details for each bus 

        FOR each_bus in bus_events: 

            # Initialize the State of Energy 

                soe = MAXIMUM_SOE   

            FOR event in each_bus: 

                # Update SoE based on the event 

                    soe = UPDATE_SOE(soe, event) 

                # Adjust soe_penalty if soe is negative 

                    IF soe < 0: 

                        soe_penalty += ABS(soe) 

            # Adjust soe_penalty if the final soe is not 100 

                IF soe != 100: 

                    soe_penalty += (100 - soe) 

    # Compute the fitness value 

        penalty = 1 / num_of_buses 

        P = penalty * (soe_penalty + number_of_violations) 

        fitness = 1 - (num_of_vehicles / num_of_buses) – P 

 

    RETURN fitness 

 

The GA algorithm is set to run for 5,000 generations, and four mating parents were designated 

for each generation. The steady-state selection method is chosen for parent selection, promoting 

a gradual and consistent replacement of individuals in the population. A two-point crossover 

technique is employed, where two random crossover points are determined and genes between 

these points are swapped between two parent individuals. The mutation approach is of inversion 

type, where a selected gene segment is reversed to introduce diversity and 10% of genes are 

subjected to mutation. To maintain continuity, four parents from the current generation were 

retained for the subsequent one. The GA was implemented using Python PyGad library. 

5. OPTIMIZATION RESULTS 

5.1.  Scenario generation and data description 

A detailed system scenario has been developed to replicate the complexity of a city bus 

transport system [23]. For the purpose of verifying the MILP optimization algorithm 

(Subsection 5.3), a scenario involving 50 trips distributed across six distinct bus lines has been 

set up. Each line is delineated by two endpoints (start and final) selected from a pool of six 

possible end stations, resulting in some lines sharing the same end stations. Within this setup, 

three chargers are randomly placed among these six end stations. The electric buses are set to 

have a battery with the capacity of 100 kWh, while the chargers provide power of 1.74 

kWh/min, serving one bus at a time. The trips are scheduled to begin randomly throughout the 

day, with intervals of 10 to 30 minutes between consecutive trips. The trip duration ranges from 

10 to 50 minutes, and the buses energy consumption rate randomly varies in the range from 0.8 

to 1.2 kWh/min. The deadhead distance is set to randomly vary in the range from 10 to 50 km. 
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The GA optimization algorithm has been verified and compared with the MILP algorithm for 

a set of scenarios having the number of trips setting in the range from 5 to 500 and maintaining 

the remaining foundational input parameters. 

 

5.2.  MILP optimization  

The MILP methodology depicted in Figure 1 and elaborated in Section 3 has initially been 

applied to the case of conventional bus fleet. In this case, the problem formulation was reduced 

by removing the charging elements and constraints. More specifically, the scheduling of 

conventional buses was carried out by using the objective functions (1) and (2), and the 

constraints (3), (4), and (7), while solely the decision variable 𝑥𝑖𝑗
𝑘  was involved. Subsequently, 

the MILP optimization has been conducted for the target case of e-bus fleet, where the full 

problem formulation of Section 3 is used. 

Fig. 3 shows the comparative Pareto frontiers obtained for the cases of conventional and electric 

city bus fleets, where the MILP algorithm is used along the basic scenario including 50 trips. 

Evidently, this system of relatively small size can be handled by only 5 conventional buses, in 

which case the deadhead distance equals to almost 550 km (Fig. 3a) or around 20% of the total 

distance made when the number of buses is large enough to eliminate the deadhead distance (at 

least 32 buses). Due to the range and charging constraints, the e-bus fleet requires higher 

minimum number of buses compared to the conventional fleet (6 vs. 5, Fig. 3a) with the 

deadhead distance being reduced to some extent (from 20% to 17.5%, Fig. 3b), and the Pareto 

frontier generally shifts to higher values of the two objectives. However, as the number of 

electric buses increases (to 22), Pareto front approaches that of the conventional fleet. This is 

because for the large enough fleet, the charging system is efficient enough not to disturb the 

bus scheduling. 

 

 

Fig. 3. Comparative Pareto frontiers obtained by MILP approach in the case of conventional 

and electric bus scheduling optimization.  

5.3.  Comparative analysis of MILP and GA optimization results 

A comparative analysis of the MILP and GA optimization results is presented in Fig. 4 for the 

case of minimizing only the total number of buses criterion (1). Both conventional and electric 

fleets are considered in the MILP case, while only the electric fleet is concerned in the GA case. 

For the sake of clear comparison of the two approaches, the computation time of MILP 

algorithm has been restricted to match that of the GA for the considered size of the transport 

system (i.e. the number of trips, the x-axis in Fig. 4).  
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Fig. 4 indicates that the computational inefficiency of the MILP algorithm progressively grows 

with the rise of system size, i.e. number of trips (not that the execution time axis is as given as 

logarithmic). Moreover, as the system size expands, the MILP algorithm for electric fleet often 

fails to produce any feasible solution within the allotted time, as evidenced by the missing 

solutions for 100, 200, and 500 trips in Fig. 4. In contrast, the GA consistently yields feasible 

solutions for these larger trip numbers where MILP falls short. While the GA tends to provide 

sub-optimal results (e.g. for 50 trips, Fig. 4), it aligns with the MILP optimal solution for 

smaller-scale systems (same solution found for 10 and 25 trips) and consistently follows the 

solutions yielded by the MILP algorithm for large-size conventional fleet. Hence, the GA 

emerges as is deemed to be a more suitable choice for large-scale e-bus transport systems than 

the MILP algorithm. 

 

 

Fig. 4. Comparison of minimal numbers of buses obtained by using MILP and GA approaches 

for various sizes of city bus transport system. 

6. CONCLUSION  

A multi-objective electric city bus scheduling optimization approach has been proposed. The 

optimization problem was formulated as a Mixed Integer Linear Programming (MILP) 

problem. It was enriched compared to the available literature with several features and 

constraints such charge sustaining condition and inherent variability of buses and charger 

parameters. Also, a sequential multi-objective optimization was employed, which in addition 

to minimizing the total number of buses seeks to minimize the deadhead distance (the distance 

travelled outside of regular service). This combined approach offers a broader spectrum of 

Pareto optimal solutions as a trade-off between investment and operating costs. 

The optimization problem has first been solved by using a MILP solver. This approach provides 

convergence to optimal solution, but it is limited to small-scale transport systems due to its 

computational complexity (particularly for the electrified ones due to the more complex 

constraint formulation). The optimization results reveal the Pareto front in the number of buses 

and deadhead distance objectives. The Pareto front is shifted to higher values of objectives (i.e., 

lower performance) in the case of e-bus fleet when compared to the conventional fleet, which 

is due to the e-bus range and charging restrictions. Yet, as the number of buses rises, the 

performance disparity between the two systems diminishes, which is because the range and 

charging restrictions become less relevant for the expanded fleet size. 
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The MILP optimization problem has then been solved by using a Genetic Algorithms (GA). 

The GA has demonstrated adaptability across different transport system scales. That is, the GA 

aligns with MILP outcomes in small-scale settings and remains reliable, although nearly 

optimal, in mid/large-scale settings, thus making it a more suitable choice for solving large-size 

e-bus scheduling problems. 
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