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ABSTRACT 

Battery electric vehicles with multiple motors are characterized by actuator redundancy, 

which calls for application of instantaneously optimized distribution of motor/wheel torques, 

thus minimizing the energy consumption, i.e., maximizing the vehicle range. If the e-motors 

are equipped with disconnect clutches, the energy saving potential becomes even higher due 

to the avoidance of drag of inactive e-motors. However, in this case optimization through time 

and predictive control techniques should be used to provide globally minimal energy 

consumption. To, this end, the paper proposes the following modeling, optimization, and 

control methods for straight-line driving mode: (i) a dynamic backward-looking model of 

electric vehicle propelled by disconnect clutch-equipped four wheel motors, which takes into 

account the clutch synchronization-related drivetrain transient loss; (ii) globally optimal, 

dynamic programming (DP)-based off-line optimization of e-motor torque and clutch state 

control trajectories, (iii) a parameter-optimized rule-based (RB) torque vectoring control 

strategy, and (iv) a model predictive torque vectoring control (MPC) strategy. The control 

strategies are verified by simulation for various certification driving cycles, and the results are 

compared with the DP-optimal benchmark for different values of a user-defined weighting 

coefficient, which penalizes frequent clutch disconnects for improved durability. The DP 

optimization results reveal that the energy consumption reduction achieved through the 

disconnect clutch functionality is up to 7%, on top of up to 5% reduction achieved by torque 

distribution itself. The RB and MPC control strategies approach the DP energy consumption 

benchmark within the margin of 1.3% and 0.6%, respectively. 
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1. INTRODUCTION 

Configuring the battery electric vehicles with multiple e-motors is mainly motivated by 

achieving significantly enhanced vehicle dynamics performance. For instance, using two 

motors, one on each side of a single axle (an active differential), provides generation of active 

yaw torque for safer, better damped, and more agile lateral vehicle dynamics control [1]. 

Alternatively, using two motors to drive each axle via mechanical differentials leads to an all-

wheel drive (AWD) configuration characterized by more agile longitudinal driving and more 
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stable cornering (particularly at slippery roads) [2]. Finally, all these benefits can be 

combined and maximized if four e-motors are used to independently drive each wheel. 

For the commanded total longitudinal force (or acceleration) and the demanded yaw torque 

(zero for straight-line driving), the four e-motor drive vehicle is characterized by two 

redundant degrees of freedom (DOF). That is, two torque distribution coefficients can be 

freely allocated to minimize the battery energy consumption, i.e., to maximize the vehicle 

range [3]. In the cost-effective case of two front/rear-axle e-motors, there is still a single DOF 

to optimally allocate, i.e., a front/rear axle torque distribution coefficient can be optimized for 

energy-efficient driving. It is analytically proven in [4] that, for the assumptions of equal e-

motors and a specific realistic shape of e-motor power loss vs. torque demand curve 

(monotonically rising one with a characteristic saddle point), the optimal front/rear torque 

distribution is such that the single-axle (either front or rear) mode is used for low total torque 

demand, while the AWD mode with 50:50% torque split is employed for mid-high total 

torque demand. The torque switching point depends on the vehicle velocity, and it can be 

determined either numerically [4] or analytically [5]. It is shown in [5] that, when accounting 

for the longitudinal tire slip loss minimization, the single-axle operation should be assigned to 

rear axle during acceleration and the front axle for (regenerative) braking. That is, the torque 

should be transferred to the axle with higher friction potential (due to the varying normal 

load). 

The above energy-efficient torque distribution rule can also be applied in the cornering case, 

where the four-motor drive is split into left- and right-side tracks [4]. To minimize the lateral 

tire slip loss, the outer-track motors are first considered, where only a single motor is used at 

low torque demands (the rear outer one for acceleration and the front outer one for 

deceleration). If the total torque demand exceeds the first torque switching point, both outer 

motors are used in the 50:50% split [5]. As the torque demand further grows, first a single and 

then both inner motors get engaged, i.e., the number of motors continues to be progressively 

increased to three- and then four-wheel drive configuration. Analytical expressions for the 

three torque switching points and the related active yaw torque brake points are derived in [5]. 

The overall rule-based (RB) feedforward torque vectoring strategy is implemented in [6] and 

connected with a superimposed lateral stability controller. It has been demonstrated in [4-6] 

that the simple-to-implement RB controller provides the corrected/active vehicle understeer 

characteristic which is close to the globally optimal understeer characteristic, and which leans 

toward the neutral steer characteristic for sporty feel, still with some considerable stability 

reserve. 

Since the e-motor (particularly the permanent magnet ones) are prone to idling drag loss, the 

use of disconnect clutches (typically dog clutches) have been considered in the automotive 

industry to disconnect the motors that are not active. For instance, the rear motors are 

disconnected when the front-axle motor(s) are active, thus avoiding the rear motor drag loss 

and improving the energy efficiency and vehicle range. However, the round-trip energy loss 

caused by (i) the energy drawn from the battery for the motor startup to synchronize the dog 

clutch and (ii) the energy recuperated by decelerated motor after the clutch is disconnected 

should be taken into account in the vehicle model used in optimization and optimal control. 

This model is dynamic by its nature even if the simple kinematic, backward-looking 

powertrain description is considered, because the clutch state in the previous sampling step is 

required to calculate the transient (connect/disconnect) loss in the current step. Next, the 

dynamic nature of powertrain behavior prevents the instantaneous control allocation from 

being globally optimal, i.e., the knowledge of forthcoming driving cycle is needed to find the 

globally optimal e-motor torque control trajectories. The optimization could be subject to 
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limited clutch disconnect frequency for clutch durability reasons. Finally, for the same 

reasons the rule-based control strategy should be modified in the presence of disconnect 

losses, or ultimately a predictive control strategy should be designed. 

To the best of authors' knowledge, optimization and optimal control of torque distribution of 

BEV e-motors with disconnect functionality has barely been investigated in the available 

literature. A rare exemption is [7] (see also [3]), where a considerable battery energy 

consumption is reported when employing the disconnect option. However, this reference 

apparently neglects the disconnect transient loss, i.e., uses the same control allocation 

techniques as in the case of permanently connected motors [4-6]. To fill the research gap, this 

paper presents a summary of the authors' recent research work in the field of modeling, 

control trajectory optimization, rule-based control, and model predictive control of BEV 

straight-line driving torque vectoring in the presence of clutch disconnect functionality. A 

more detailed elaboration of the particular developments is presented in [8-10]. 

The remaining part of this paper is organized into six sections. Section 2 describes a 

backward-looking four-motor BEV powertrain dynamic model that accounts for e-motor 

connect/disconnect energy losses. Dynamic programming (DP)-based control trajectory 

optimization method is presented in Section 3 along with instantaneous optimization results. 

Section 4 proposes an RB control strategy based on a set of speed-dependent torque switching 

curves with a hysteresis. The same section presents an ultimate model predictive control 

(MPC) strategy, which utilizes the DP optimization algorithm developed in Section 3. The 

developed control strategies have been verified by computer simulations for various 

certification driving cycles, and the results are compared with the globally optimal DP 

benchmark, as well as with the baseline control strategies based on even torque distribution 

and optimal allocation with no disconnect option. 

2. MODELING 

A direct four-wheel drive case is assumed, where equal e-motors are connected to each wheel 

via a gear with the speed ratio h and a disconnect dog clutch. The longitudinal vehicle 

dynamics parameters are adopted from Chevrolet Volt extended range electric vehicle 

(EREV) [11], with certain adjustments of the vehicle mass mv and the center of gravity height 

hCOG to account for increased battery mass when applied to the BEV. The smaller of two 

EREV's permanent magnet synchronous motors is taken as the BEV e-motor. Its power is 55 

 

Fig. 1. E-motor efficiency and maximum torque maps (a) and drag loss characteristic (b). 
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kW, i.e., the total installed BEV power is 220 kW. The e-motor efficiency map and the 

maximum torque curve are shown in Fig. 1a. The connected, but unselected e-motor (zero 

torque command) imposes a speed-dependent drag power loss. The drag loss has firstly been 

estimated based on the extrapolation of power loss curves obtained from the map in Fig. 1a, 

and then adjusted for a more realistic progressive characteristic in accordance with 

experimental data from [6]. The obtained drag loss characteristic is shown in Fig. 1b. 

The computationally efficient backward-looking vehicle modeling approach is used to 

facilitate the optimization study [12]. The powertrain variables are calculated in the direction 

from wheels towards e-motors (so, in the backward manner). The total wheel torque demand 

is determined from the driving cycle-defined vehicle velocity vv based on the vehicle 

longitudinal dynamics equation: 

𝜏𝑤,𝑡 = ∑ 𝜏𝑤,𝑖

4

𝑖=1

= (𝑚𝑣�̇�𝑣 + 𝑚𝑣𝑔 sin 𝛼 + 𝑅𝑜𝑚𝑣𝑔 cos 𝛼 + 0.5𝜌𝑎𝑖𝑟𝐶𝑑𝐴𝑓𝑣𝑣
2)𝑟 (1) 

where α is the road slope (set to zero for certification driving cycles used herein), r is the 

effective tire radius, g is the gravity acceleration, Ro is the rolling resistance coefficient, ρair is 

the air density, Cd is the aerodynamic drag coefficient, Af is the vehicle frontal area, and τw,i, i 

= 1, 2, 3, 4, is the torque of front-left, front-right, rear-left, and rear-right wheel, respectively. 

For the considered case of straight-line driving, the yaw torque is set to be equal to zero, thus 

giving 

𝜏𝑤,1 − 𝜏𝑤,2 + 𝜏𝑤,3 − 𝜏𝑤,4 = 0 (2) 

By defining the front-rear torque distribution through the dimension-less coefficient 𝜎 =

(𝜏𝑤,1 + 𝜏𝑤,2) 𝜏𝑤,𝑡⁄  and the front- and rear-axle left-right torque distributions through 𝜌𝑓 =

𝜏𝑤,1 (𝜏𝑤,1 + 𝜏𝑤,2)⁄  and 𝜌𝑟 = 𝜏𝑤,3 (𝜏𝑤,3 + 𝜏𝑤,4)⁄ , respectively, and solving Eqs. (1) and (2), 

one obtains [3]: 

𝜏𝑤,1 = 𝜎𝜌𝑓𝜏𝑤,𝑡 

(3) 

𝜏𝑤,2 = 𝜎(1 − 𝜌𝑓)𝜏𝑤,𝑡 

𝜏𝑤,3 = (1 − 𝜎)𝜌𝑟𝜏𝑤,𝑡 

𝜏𝑤,4 = (1 − 𝜎)(1 − 𝜌𝑟)𝜏𝑤,𝑡 

with 

𝜌𝑟 = {
𝜎𝜌𝑓 − 0.5

𝜎 − 1
,  if 𝜎 ≠ 1,  

0.5,    otherwise.
 

(4) 

Eqs. (3) are used to calculate the individual wheel torques τw,i for the given total torque 

demand 𝜏𝑤,𝑡 and the control inputs 𝜎 ∈ [0, 1] and 
𝑓

∈ [0, 1] commanded by the control 

strategy. 
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If the clutch is connected, the wheel torque τw,i is transformed to the motor torque τm,i based 

on equation 

𝜏𝑚,𝑖 =
1

ℎ
(𝜏𝑤,𝑖𝜂𝑡𝑟

𝑘𝑡(𝜏𝑤,𝑖) +
𝑃0(𝜔𝑤,𝑖)

𝜔𝑤,𝑖
), (5) 

which takes into account the gearbox efficiency ηtr and the transmission idling loss P0 

(described by the maps from [11], adjusted for lower BEV gearbox loss when compared to 

EREV transmission loss), and where kt equals −1 for τw,i ≥ 0 (motoring) and 1 for τw,i < 0 

(regenerative braking). The motor speed is determined as 

𝜔𝑚,𝑖 = ℎ𝜔𝑤,𝑖 = ℎ
𝑣𝑣

𝑟(1 − 𝑠𝑥,𝑖)
 (6) 

where sx,i is the longitudinal slip determined from the linearized tire model as 

𝑠𝑥,𝑖 =
𝜏𝑤,𝑖

𝑟𝑘𝑥(𝐹𝑧,𝑖)
 (7) 

where kx is the tire longitudinal stiffness, whose dependence on the tire normal load Fzi is 

obtained from the LuGre tire friction model [13]. The tire normal load distribution is defined 

by [3]: 

𝐹𝑧1,2 =
1

2
𝑚𝑣 (

𝑙𝑟

𝑙
𝑔 −

ℎ𝐶𝑂𝐺

𝑙
�̇�𝑣) 

(8) 

𝐹𝑧3,4 =
1

2
𝑚𝑣 (

𝑙 − 𝑙𝑟

𝑙
𝑔 +

ℎ𝐶𝑂𝐺

𝑙
�̇�𝑣) 

where l is the distance between front and rear axle, and lr is the distance between rear axle and 

COG. The e-drive electric power is given by 

𝑃𝑒𝑙,𝑖 = 𝜏𝑚,𝑖𝜔𝑚,𝑖 + 𝑃𝑚,𝑙𝑜𝑠𝑠,𝑖(𝜔𝑚,𝑖, 𝜏𝑚,𝑖) (9) 

where the power loss term reads 

𝑃𝑚,𝑙𝑜𝑠𝑠,𝑖 = {
𝜔𝑚,𝑖𝜏𝑚,𝑖(𝜂𝑚,𝑖

𝜈 (|𝜔𝑚,𝑖|, |𝜏𝑚,𝑖|) − 1), if 𝜏𝑤,𝑖 ≠ 0,

𝑃𝑑(|𝜔𝑚,𝑖|) + 𝑃0(𝜔𝑤,𝑖), if 𝜏𝑤,𝑖 = 0.
 (10) 

where ν equals −1 for τm,i ≥ 0 (motoring) and 1 for τm,i < 0 (regenerative braking). 

When the e-motor is connecting, it first needs to start up to reach the wheel speed referred to 

the clutch shaft (hωw,i). In that moment the dog clutch is synchronized, and it can be locked, 

which gives ωm,i = hωw,i. The synchronization process requires the energy to be drawn from 

the battery (Ec). This energy has been determined off-line by simulating the e-motor speed 

control system consisting of a proportional-integral (PI) controller tunned according to 

symmetrical optimum criterion, speed-dependent torque limit based on the limit curve in Fig. 

1a, a first-order lag accounting for the motor torque generation dynamics, and the motor 

rotational dynamics integral term. The motor startup response for the maximum value of 

target speed ωm,R is shown in the left half of Fig. 2a. The synchronization energy Ec has been 

determined by integrating the motor power 𝜔𝑚,𝑖𝜏𝑚,𝑖𝜂𝑚,𝑖
𝜈  (cf. Eq. (10)) over the sampling time 

interval (set to Td = 1 s herein) for different target/synchronization speeds ωm,R, and the results 

are shown in Fig. 2b by red line. 
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After the e-motor disconnect command is issued, the clutch is first opened, and the motor 

speed reference is set to zero (ωm,R = 0). It is assumed that the motor is, consequently, stopped 

within a single sampling step by using regenerative braking (see right half of Fig. 2a). The 

recuperated energy −Ed > 0 has been determined by means of simulation of the e-motor speed 

control system for different starting speeds. The results are shown by blue line in Fig. 2b. 

Note that the gap between the characteristics −Ed and Ec shown in Fig. 2b corresponds to 

round-trip losses. 

 

Fig. 2. E-motor speed response during e-motor connecting and disconnecting process for 

maximum synchronization speed (a) and corresponding values of energy drawn from (Ec) and 

recharged to battery (−Ed) for different synchronization speeds (b). 

The clutch state process is described by the discrete-time state equation 

𝐜(𝑘 + 1) = [0 0 0 0] ∙ 𝐜(𝑘) + 𝐈 ∙ 𝐜𝑅(𝑘), (11) 

where I is the identity matrix, and 𝐜 = [𝑐1 𝑐2 𝑐3 𝑐4]𝑇 and 𝐜𝑅(𝑘) = [𝑐𝑅,1 𝑐𝑅,2 𝑐𝑅,3 𝑐𝑅,4]
𝑇
 are the 

actual and control strategy-commanded (reference) clutch state vectors, respectively, with the 

clutch state being defined as 

𝑐𝑖 = {
0, if clutch is open
1, if clutch is locked

 , i = 1, ...,4. (12) 

The model assumes that the e-motor connect (ci(k) = 0, cR,i(k) = 1) and disconnect transient 

process (ci(k) = 1, cR,i(k) = 0) is completed within a single sampling time, i.e., ci(k+1) = cRi(k) 

is valid. According to Fig. 2, it is clear that the transient process completes in 250 ms in the 

worst case of maximum reference speed step, thus meaning that the above assumption is 

satisfied for the considered sampling time Td = 1 s, or even for four times smaller sampling 

time (Td = 0.25 s) that may be more realistic for sporty, AWD BEV. During the whole clutch 

transient sampling step, the torque is assumed not to be transferred to the corresponding 

wheel. 

Finally, the energy consumed from the battery by the ith e-drive at any sampling instant k is 

determined as 

𝐸𝑒𝑙,𝑖(𝑘) = 𝑐𝑖(𝑘)𝑐𝑅,𝑖(𝑘)𝑇𝑑𝑃𝑒𝑙,𝑖(𝑘) + 𝑐�̅�(𝑘)𝑐𝑅,𝑖(𝑘)𝐸𝑐,𝑖(𝑘) + 𝑐𝑖(𝑘)𝑐�̅�,𝑖(𝑘)𝐸𝑑,𝑖(𝑘), (13) 

where �̅� denotes the complement of x (i.e., �̅� = 1, for x = 0, and vice versa). 
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3. OPTIMIZATION 

3.1.  Instantaneous optimization 

If no disconnect option is considered (𝑐𝑖(𝑘) = 𝑐𝑅,𝑖(𝑘) = 1, ∀𝑖, ∀𝑘), the vehicle model from 

Section 2 becomes static (no state equation (11) appears) and the optimal control problem 

reduces to instantaneous optimization, i.e., optimal control allocation. The optimal control 

allocation maps can be found off-line in dependence on total wheel torque demand τw,t and the 

vehicle velocity vv. Fig. 3a shows the optimized map of front-rear torque distribution control 

input σ for the equal left-right distributions (ρf = ρr = 0.5; see Eq. (3)). Evidently, the optimal 

solution is such that the σ is either close to 0.5 (AWD with equal front/rear distribution), 0 

(RWD), or 1 (FWD). The AWD mode is used above the speed-dependent torque switching 

curve (red line in Fig. 3a), while the 2WD modes are optimal below this switching curve. The 

black line in Fig. 3a, which separates the RWD and FWD modes is aligned well with the road 

load curve (obtained from (1) for �̇�𝑣 = 0 and 𝛼 = 0). Hence, the RWD mode is optimal for 

accelerating vehicle (�̇�𝑣 > 0), while the FWD mode should be used in the case of 

deceleration (�̇�𝑣 < 0). Namely, the torque should be transferred to the tires with higher 

normal load (cf. Eq. (8)), i.e., larger friction circle, which is to minimize the longitudinal tire 

slip loss. The above findings are in accordance with numerical and analytical results from [3-

5]. 

In the case of uneven left-right torque distribution (ρf ≠ 0.5, ρr ≠ 0.5), i.e., for diagonal or 

warp torque transfer, on one side of the vehicle the torque would be transferred to a wheel 

with smaller friction circle. This results in higher energy consumption (i.e., suboptimal 

behavior) when compared to the nominal case ρf = ρr = 0.5 (see [8] for numerical results). 

Fig. 3b shows the optimal control allocation results in the case of disconnecting e-motors on 

the rear axle for σ = 1 and the front axle for σ = 0. The results are qualitatively the same as in 

the case of no disconnect considered (cf. Fig. 3a). However, the AWD-2WD boundary curve 

(cyan line) is shifted up in Fig. 3b when compared to Fig. 3a. Namely, the 2WD model is 

 

Fig. 3. Instantaneous optimization results when disregarding (a) and accounting for 

disconnect clutch functionality (b). 

 



8 

 

active in a wider torque range, which is because the drag loss is absent on the opposite 

(inactive) axle. Of course, there are transient losses when switching from 2WD to AWD mode 

and vice versa, which are disregarded in Fig. 3b. They can only be taken into account through 

global optimization based on the dynamic vehicle model (see next subsection). 

3.2.  Control trajectory optimization 

When considering the disconnect clutch functionality, including the corresponding switching 

losses, the full dynamic model from Section 2 should be used. The optimization problem is 

then defined through time, i.e., the trajectories of control variables σ(k) and cR(k) are 

optimized over the whole driving cycle (herein, ρf is set to 0.5 according to discussion in 

Subsection 3.1; see [8] for more general consideration). The cost function to be minimized is 

defined as 

𝐽 = ∑ (𝐹𝑠𝑤(𝑘) + ∑ 𝐸𝑒𝑙,𝑖(𝑘)

4

𝑖=1

)

𝑁𝑓−1

𝑘=0

, (14) 

where the e-drive energy consumption Eel,i at each sampling step k is defined by Eq. (13), and 

Nf = tf / Td is the number of sampling steps of a driving cycle of length tf. The term Fsw(k) 

penalizes frequent clutch switching to avoid clutch durability issues, and it is defined as 

𝐹𝑠𝑤(𝑘) = {
0, if 𝐜𝑅(𝑘) = 𝐜(𝑘),

𝐾𝑠𝑤, otherwise,
 (15) 

where Ksw is the switching penalization coefficients, which is set as a trade-off between 

energy efficiency and durability. 

The optimization is subject to process dynamics defined by the state equation (11) and a set of 

nonlinear algebraic equations presented in Section 2, where it is assumed that the clutches are 

initially locked. It is also formally requested that the clutches are locked at the end of driving 

cycle, i.e., that the final condition corresponds to the initial condition for sustaining operation 

over multiple driving cycles: 

𝐜𝑖 = 𝐜(0) = 𝐜𝑓 = 𝐜(𝑁𝑓) = [1 1 1 1]T. (16) 

The inequality constraints include those on maximum motor torque (see Fig. 1a) and 

maximum tire force: 

−𝜏𝑚,max(|𝜔𝑚,𝑖|) < 𝜏𝑚,𝑖 < 𝜏𝑚,max(|𝜔𝑚,𝑖|), (17a) 

−𝜇𝐹𝑧,𝑖 < 𝜏𝑤,𝑖 𝑟⁄ < 𝜇𝐹𝑧,𝑖, (17b) 

where μ is the tire-road friction coefficient and Fz,i is the tire normal load given by Eq. (8). 

Also, to avoid drivetrain torque interruption, commanding clutch disconnect is allowed only 

on a single axle, providing that the clutches on opposite axle are connected: 

𝐜𝑅(𝑘) ∈ {

{[1 1 0 0]T, [1 1 1 1]T}, if 𝐜(𝑘) = [1 1 0 0]T,

{[0 0 1 1]T, [1 1 1 1]T}, if 𝐜(𝑘) = [0 0 1 1]T

{[1 1 0 0]T, [0 0 1 1]T, [1 1 1 1]T}, if 𝐜(𝑘) = [1 1 1 1]T.

, (18) 

The optimization is based on the dynamic programming (DP) algorithm [11] because it can 

provide a globally optimal solution for the particular case of nonlinear and discontinuous 
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system. The main weakness of the DP algorithm is that it is computationally demanding and, 

thus, applicable to systems of a low dimensionality. This is the case here owing to the use of 

backward vehicle model, and the fact that clutch state and control inputs c and cR are binary 

variables (i.e., quantized in only two levels). Based on the instantaneous optimization results 

from Subsection 3.1, even the front-rear torque distribution control input σ can be quantized 

in a couple of levels (e.g., 0, 0.5, and 1; see Section 6) for enhanced computational efficiency. 

Note, that by quantizing the states and control inputs, their limits are automatically imposed, 

so that there is no need for additional inequality constraints. 

The DP algorithm is executed off-line in two phases. Firstly, starting from the final condition 

cf and accounting for the discrete-time system state-space model and the inequality constraints 

(17) implemented as soft constraints (additive to cost function), the control input vector [σ; 

cR] is found in the time step Nf −1 to minimize the cost function contribution in the final step 

of driving cycle for all values of state vector c in the time step Nf −1. The optimized control 

vectors are stored in memory, and the optimization process is repeated recursively backward 

in time. Started from the known initial state vector c(0), the corresponding optimal control 

vector in the 0th step is selected, which is then employed together with the system model to 

calculate the next state vector c(1) and corresponding optimal input vector, and the calculation 

is continued forward in time until the whole control vector is retrieved. Non-allowed 

combinations of 𝐜(𝑘) and 𝐜𝑅(𝑘), according to Eq. (18), are not considered as the optimal 

candidates. More details on the DP algorithm realization are provided in [8]. 

4. CONTROL 

4.1. Rule-based control 

The rule-based (RB) strategy is originally motivated by the instantaneous optimization results 

shown in Fig. 3, which are summarized through the boundary curves replotted in Fig. 4. Since 

the disconnect clutch functionality is considered herein, the corresponding boundary curve τb,d 

is most relevant for the rule-based strategy. However, because the optimization resulting in 

this curve does not take into account the e-drive switching losses (Section 3), it may be 

suboptimal for dynamic driving conditions that typically occur in low vehicle velocity range 

(e.g., city driving). More importantly, implementing this boundary curve in the low-velocity 

conditions, the clutch disconnects would be frequent, thus affecting the clutch durability. 

Therefore, clutch disconnect should be avoided in the low-velocity range by using the second 

boundary line (τb,c in Fig. 4), which is obtained through optimization under the assumptions of 

connected motors (locked clutches). In the region below the line τb,c, a 2WD mode is active 

with no clutch disconnect on the opposite axle, so that when a transition to AWD occurs (for 

the operating point above the line τb,c), there is no clutch switching. 

In the mid-high velocity range, a smooth transition from the no-disconnect optimal line τb,c to 

the disconnect optimal line τb,d should be provided. This is realized through exponential 

function (see green line in Fig. 4): 

𝜏𝑏,𝑑
∗ (𝑣𝑣) = 𝜏𝑏,𝑑(𝑣𝑣) (1 − 𝑒

−
𝑣𝑣−∆𝑣𝑣

𝑉𝑐 ), (19) 

whose origin is defined by the velocity shift parameter ∆vv, and which converges to the 

optimized line τb,d for the velocities vv > ∆vv + 3Vc (tunable via the velocity constant 

parameter Vc). Note that only the upper boundary lines τb,d and τb,c are labeled in Fig. 4, and 

τb,d is used to calculate 𝜏𝑏,𝑑
∗  according to (19). The lower boundary lines need to be mapped, 
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as well, and used to calculate the lower boundary counterpart of 𝜏𝑏,𝑑
∗  (all shown in Fig. 4), 

where the parameters ∆vv and Vc remains the same as in the case of upper line. 

Finally, to further suppress the clutch disconnects and make the results closer to the DP 

benchmark [9], a hysteresis is introduced to the disconnect line 𝜏𝑏,𝑑
∗  (see magenta line in Fig. 

4). The upper part of the hysteresis-related dashed line is described as (cf. (19)): 

𝜏𝑏,𝑑ℎ
∗ (𝑣𝑣) = 𝐾ℎ𝜏𝑏,𝑑(𝑣𝑣) (1 − 𝑒

−
𝑣𝑣−∆𝑣𝑣−∆𝑣𝑣ℎ

𝑉𝑐 ), (20) 

where the hysteresis is defined by the downscaling gain 0 < Kh < 1 and the horizontal shift 

∆vvh > 0. 

As described in Section 3 and designated in Fig. 3, when operating in the 2WD mode (below 

red and green lines in Fig. 4), the optimal solution is such that RWD is used above the road 

load line (brown line), and the FWD is active below this line. Such a law would make the 

control strategy more complex (particularly from the standpoint of forbidding the direct 

FWD/RWD transitions when disconnect is active; see the constraint (18)) and would increase 

the frequency of clutch switching (occurs for all motors at the transition over the brown line 

in the region below green line). On the other hand, the DP results from [8] point out that the 

energy savings when using both FWD and RWD rather than either FWD or RWD are 

negligible (a fraction of percent for the given vehicle and test scenarios), which is explained 

by a negligible influence of the longitudinal tire slip loss when compared to the e-drive loss 

[5]. Hence, the proposed RB strategy relies on RWD mode only when the 2WD mode is 

active (FWD mode could be used instead, with a marginal influence on results, [8]). 

The final RB control strategy is, thus, defined by the red, green, and magenta boundary lines, 

which define four characteristic modes of operation (Fig. 4): 

1) RWD with the front-axle motors connected (RWD-1, between red and green lines), 

2) AWD (beyond red and green lines), 

3) RWD with the front-axle motors disconnected (RWD-0, within magenta lines), and 

4) Keeping previous clutch states 𝐜(𝑘 − 1) (between green and magenta lines); more 

specifically, mode(k) is set to: RWD-0 if 𝐜(𝑘 − 1) = [0 0 1 1]T, AWD if 𝐜(𝑘 − 1) =
[1 1 1 1]T and the operating point lies beyond the (expanded) red lines, and RWD-1, 

otherwise. 

Accordingly, the clutch control input is defined as 

𝐜𝑅(𝑘) = {
[0 0 1 1]T, if RWD-0,

[1 1 1 1]T, if RWD-1 or AWD,
 (21) 

while the front-rear torque distribution coefficient σ is set according to the following rule (see 

Section 3): 

𝜎(𝑘) = {
0, if RWD-0 or RWD-1,

0.5, otherwise.
 (22) 

The RB strategy has four free parameters (∆vv, Vc, Kh, and ∆vvh), which should be optimized 

for the best performance. The parameter optimization procedure has been performed in three 

characteristic steps (see [9] for details): (i) preparing the sets of discrete values for all the four 
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parameters; (ii) iterating through all parameter combinations, performing vehicle simulation 

for a given driving cycle, and saving the values of energy consumption and number of clutch 

state changes; (iii) performing Pareto filtering of the saved results (in the two criteria) to 

obtain a Pareto frontier, which can be compared with the DP benchmark frontier obtained for 

different values of weighting coefficient Ksw (Section 5). 

 

Fig. 4. Boundary curves of RB control strategy. 

 

4.2. Model predictive control 

The DP algorithm assumes the full knowledge of driving cycles, and it is aimed for off-line 

control trajectory optimization. When applied on a receding horizon of Np steps, it becomes a 

part of on-line-executable model predictive control (MPC) strategy. The DP optimization is 

applied at any sampling step k on the receding horizon [k, k+Np−1], thus giving the optimal 

control trajectories σ(k) and cR(k). The first sample of those control inputs is applied in the 

sampling step k. The calculation process is then repeated in every next sampling step. 

The DP algorithm remains as described in Section 4, with the following exceptions: (i) the 

final condition of (16) is disregarded, as it cannot be implemented in a straightforward way 

and has a minor practical meaning (the vehicle velocity is zero at the end of driving cycle/trip, 

and the clutches can readily be locked immediately after the trip), (ii) the forward phase is 

omitted as only the first control input is needed (i.e., applied), and (iii) the control input σ is 

quantized in a couple of (nearly-optimal) levels (here, 0, 0.5, and 1) with a negligible 

influence on accuracy (see discussion in Section 5 and [8]). 

To perform the DP optimization on the prediction horizon, the vehicle (city bus) velocity 

should be known/predicted for that portion of trip. The velocity prediction is typically 

performed by using neural network (NN) models. It is shown in [14] that the NN prediction 

accuracy can be high for the length of prediction horizon of up to Np ≅ 10 steps, and that this 

can provide effective DP-based MPC of a plug-in hybrid electric vehicle (PHEV). The same 

should be valid for BEV torque vectoring MPC, as an expectedly less complex control 

problem. 



12 

 

5. RESULTS 

Table 1 shows the comparative battery energy consumption results for three control scenarios 

and various certification driving cycles. The first two rows of the table correspond to the case 

of no motor disconnect option considered. When compared with the crude strategy based on 

equal torque distribution (σ = 0.5), the optimal control allocation results in reduction of 

energy consumption of up to 5%. This is in an agreement with the results published in [1, 3, 

4]. In the case of considering the disconnect clutch and applying the proposed DP-based 

optimization approach (with Ksw = 0), the energy consumption is reduced by up to 7% when 

compared to the optimal allocation approach. 

Blue line in Fig. 5 shows the DP optimal results obtained for UDDS driving cycle and the 

discrete torque split values 𝜎 ∈ {0, 0.5, 1} used for better computational efficiency of the DP 

algorithm. The DP results are given in the form of Pareto frontier obtained by varying the 

weighting factor Ksw of the cost function given by (14) and (15). The rightmost point 

corresponds to no switching frequency penalization (Ksw = 0), i.e., minimum energy 

consumption that equals 1.1241 kWh. This is only 0.05% higher than the corresponding value 

from Table 1, which is obtained for fine control input discretization 𝜎 ∈ {0, 0.01, … , 1}. This 

confirms that the nearly optimal control allocation values 𝜎 ∈ {0, 0.5, 1} (Section 3) are nearly 

optimal in the DP case, as well. The leftmost point of the Pareto frontier in Fig. 5 corresponds 

to the case of the weighting coefficient Ksw being high enough for resulting in no disconnects. 

The corresponding energy increase of 6.4% correlates with the energy reduction value of 

5.8% from Table 1. As a good trade-off between the energy efficiency and durability, the 

designer may opt for a Pareto optimal point placed at the knee of frontier, e.g., the one 

corresponding to 20 clutch state changes (per the length of the UDDS cycle of 1370 s or 11.99 

km) and 0.63% of energy consumption increase when compared to the rightmost, minimum 

energy point. 

Fig. 5 also shows the Pareto optimal results obtained by applying the proposed RB control 

strategy. The simple-to-implement on-line RB strategy with the hysteresis included (Fig. 4) 

can approach the off-line DP benchmark by the margin which is widely lower than 1%, and 

around 2% for the number of clutch changes in the range from 5 to 15. This error margin is 

even lower for other driving cycles from Table 1 [9]. Inclusion of hysteresis, i.e., memory in 

the control law, gives consistent and significant energy consumption reduction (cf. green and 

black lines in Fig. 5). 

Fig. 6 shows the MPC strategy verification results for the case of ideal vehicle velocity 

prediction. In the case of low penalization coefficient Ksw, i.e., when allowing for a relatively 

large number of clutch state change (larger than 40), the performance of MPC strategy 

approaches the globally optimal DP performance even for short prediction horizons Np of 

around 5 steps. When increasing Ksw to reduce the number of clutch state changes to around 

20, the prediction horizon should be expanded to around 20 steps for the performance to 

remain close to the DP benchmark. For very high Ksw corresponding to a couple of clutch 

changes, even the RB strategy is very close to the DP benchmark (see also Fig. 5). This is just 

because the control allocation is optimal when no disconnect option is used. 
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Table 1. Comparative values of battery energy consumption for different control scenarios 

and various driving cycles. 

 

 

 
Fig. 5. Pareto frontiers obtained by off-line DP control trajectory optimization and on-line RB 

control strategy without and with hysteresis (UDDS driving cycle). 

  
Fig. 6. Pareto frontiers obtained by MPC strategy for different prediction horizon lengths and 

shown along RB and DP frontiers (UDDS driving cycle). 

 

Analysis of total energy consumption, 𝐸𝑒𝑙,𝑡 [kWh] 

Disconnect 

option 
Method Allowed σ 

Driving cycle 

WLTP  

(α = 0⸰) 

UDDS  

(α = 0⸰) 

US06  

(α = 0⸰) 

HWFET 

(α = 0⸰) 

NEDC 

(α = 0⸰) 

NO 
Even 

distribution 
0.5 

3.1679 

(+2.6%) 

1.2368 

(+3.7%) 

2.1141 

(+1.9%) 

2.2477 

(+4.2%) 

1.3304 

(+5.1%) 

NO 
Control 

allocation 
{0, 0.01, …, 1} 

3.0876 

(0%) 

1.1929 

(0%) 

2.0753 

(0%) 

2.1578 

(0%) 

1.2660 

(0%) 

YES 
Dynamic 

programming 
{0, 0.01, …, 1} 

2.9238 

(−5.3%) 

1.1236 

(−5.8%) 

1.9762 

(−4.8%) 

2.0149 

(−6.6%) 

1.1879 

(−6.2%) 
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6. CONCLUSION 

The dynamic programming (DP)-based control trajectory optimization results have indicated 

that introducing the disconnect clutch reduces the multiple-motor electric vehicle energy 

consumption by around 6% for various certification driving cycles, which is on top of up to 

5% reduction achieved by torque distribution itself. The parameter-optimized rule-based (RB) 

and model predictive control (MPC) strategies approach the DP energy consumption 

benchmark within the margin of 1.3% and 0.6%, respectively. Having in mind the complexity 

of the MPC strategy and the fact that the test results do not reflect velocity prediction errors, 

the RB control strategy is deemed to be more suitable for applications. 

More detailed analyses including those related to validation of backward-looking versus 

forward-looking vehicle model, robustness of RB strategy and its evaluation for a higher 

share of transient losses, influence of sampling time reduction towards the clutch 

synchronization time of around 250 ms, sensitivity of MPC strategy to velocity prediction 

errors and length of prediction horizon, and more comprehensive simulation verification are 

presented in the individual publications [8-10]. 
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